Metamath Proof Explorer


Theorem cdleme11

Description: Part of proof of Lemma E in Crawley p. 113, 1st sentence of 3rd paragraph on p. 114. F and G represent f(s) and f(t) respectively. Their proof provides no details of our cdleme11a through cdleme11 , so there may be a simpler proof that we have overlooked. (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses cdleme12.l ˙=K
cdleme12.j ˙=joinK
cdleme12.m ˙=meetK
cdleme12.a A=AtomsK
cdleme12.h H=LHypK
cdleme12.u U=P˙Q˙W
cdleme12.f F=S˙U˙Q˙P˙S˙W
cdleme12.g G=T˙U˙Q˙P˙T˙W
Assertion cdleme11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TF˙G=S˙T

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙=K
2 cdleme12.j ˙=joinK
3 cdleme12.m ˙=meetK
4 cdleme12.a A=AtomsK
5 cdleme12.h H=LHypK
6 cdleme12.u U=P˙Q˙W
7 cdleme12.f F=S˙U˙Q˙P˙S˙W
8 cdleme12.g G=T˙U˙Q˙P˙T˙W
9 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TKHL
10 9 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TKLat
11 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TKHLWH
12 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TPA
13 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TQA
14 eqid BaseK=BaseK
15 1 2 3 4 5 6 14 cdleme0aa KHLWHPAQAUBaseK
16 11 12 13 15 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TUBaseK
17 14 2 latjidm KLatUBaseKU˙U=U
18 10 16 17 syl2anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TU˙U=U
19 18 oveq2d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙T˙U˙U=S˙T˙U
20 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TU˙S˙T
21 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TSA
22 14 4 atbase SASBaseK
23 21 22 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TSBaseK
24 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TTA
25 14 4 atbase TATBaseK
26 24 25 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TTBaseK
27 14 2 latjcl KLatSBaseKTBaseKS˙TBaseK
28 10 23 26 27 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙TBaseK
29 14 1 2 latleeqj2 KLatUBaseKS˙TBaseKU˙S˙TS˙T˙U=S˙T
30 10 16 28 29 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TU˙S˙TS˙T˙U=S˙T
31 20 30 mpbid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙T˙U=S˙T
32 19 31 eqtr2d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙T=S˙T˙U˙U
33 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TSA¬S˙W
34 1 2 3 4 5 6 7 cdleme1 KHLWHPAQASA¬S˙WS˙F=S˙U
35 11 12 13 33 34 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙F=S˙U
36 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TTA¬T˙W
37 1 2 3 4 5 6 8 cdleme1 KHLWHPAQATA¬T˙WT˙G=T˙U
38 11 12 13 36 37 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TT˙G=T˙U
39 35 38 oveq12d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙F˙T˙G=S˙U˙T˙U
40 14 2 latj4 KLatSBaseKTBaseKUBaseKUBaseKS˙T˙U˙U=S˙U˙T˙U
41 10 23 26 16 16 40 syl122anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙T˙U˙U=S˙U˙T˙U
42 39 41 eqtr4d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙F˙T˙G=S˙T˙U˙U
43 32 42 eqtr4d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙T=S˙F˙T˙G
44 1 2 3 4 5 6 7 14 cdleme1b KHLWHPAQASAFBaseK
45 11 12 13 21 44 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TFBaseK
46 1 2 3 4 5 6 8 14 cdleme1b KHLWHPAQATAGBaseK
47 11 12 13 24 46 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TGBaseK
48 14 2 latj4 KLatSBaseKFBaseKTBaseKGBaseKS˙F˙T˙G=S˙T˙F˙G
49 10 23 45 26 47 48 syl122anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙F˙T˙G=S˙T˙F˙G
50 43 49 eqtr2d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TS˙T˙F˙G=S˙T
51 14 2 latjcl KLatFBaseKGBaseKF˙GBaseK
52 10 45 47 51 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TF˙GBaseK
53 14 1 2 latleeqj2 KLatF˙GBaseKS˙TBaseKF˙G˙S˙TS˙T˙F˙G=S˙T
54 10 52 28 53 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TF˙G˙S˙TS˙T˙F˙G=S˙T
55 50 54 mpbird KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TF˙G˙S˙T
56 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TPA¬P˙W
57 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TQA¬Q˙W
58 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TPQ
59 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙T¬S˙P˙Q
60 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFA
61 11 56 57 33 58 59 60 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TFA
62 simp32 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙T¬T˙P˙Q
63 1 2 3 4 5 6 8 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQ¬T˙P˙QGA
64 11 56 57 36 58 62 63 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TGA
65 1 2 3 4 5 6 7 8 cdleme11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TFG
66 1 2 4 ps-1 KHLFAGAFGSATAF˙G˙S˙TF˙G=S˙T
67 9 61 64 65 21 24 66 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TF˙G˙S˙TF˙G=S˙T
68 55 67 mpbid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QU˙S˙TF˙G=S˙T