Metamath Proof Explorer


Theorem cdleme21ct

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cdleme21.l ˙=K
cdleme21.j ˙=joinK
cdleme21.m ˙=meetK
cdleme21.a A=AtomsK
cdleme21.h H=LHypK
cdleme21.u U=P˙Q˙W
Assertion cdleme21ct KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬U˙T˙z

Proof

Step Hyp Ref Expression
1 cdleme21.l ˙=K
2 cdleme21.j ˙=joinK
3 cdleme21.m ˙=meetK
4 cdleme21.a A=AtomsK
5 cdleme21.h H=LHypK
6 cdleme21.u U=P˙Q˙W
7 simp11 KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zKHLWH
8 simp12 KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zPA¬P˙W
9 simp13 KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zQA
10 simp21l KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zSA
11 simp231 KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zPQ
12 simp232 KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬S˙P˙Q
13 simp3ll KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zzA
14 simp3r KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zP˙z=S˙z
15 1 2 3 4 5 6 cdleme21c KHLWHPA¬P˙WQASAPQ¬S˙P˙QzAP˙z=S˙z¬U˙S˙z
16 7 8 9 10 11 12 13 14 15 syl332anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬U˙S˙z
17 simp233 KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙S˙T
18 simp11l KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zKHL
19 hlcvl KHLKCvLat
20 18 19 syl KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zKCvLat
21 simp11r KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zWH
22 simp12l KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zPA
23 simp12r KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬P˙W
24 1 2 3 4 5 6 cdleme0a KHLWHPA¬P˙WQAPQUA
25 18 21 22 23 9 11 24 syl222anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zUA
26 simp22l KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zTA
27 18 hllatd KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zKLat
28 eqid BaseK=BaseK
29 28 2 4 hlatjcl KHLPAQAP˙QBaseK
30 18 22 9 29 syl3anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zP˙QBaseK
31 28 5 lhpbase WHWBaseK
32 21 31 syl KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zWBaseK
33 28 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
34 27 30 32 33 syl3anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zP˙Q˙W˙W
35 6 34 eqbrtrid KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙W
36 simp21r KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬S˙W
37 nbrne2 U˙W¬S˙WUS
38 35 36 37 syl2anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zUS
39 simp22r KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬T˙W
40 nbrne2 U˙W¬T˙WUT
41 35 39 40 syl2anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zUT
42 1 2 4 cvlatexch3 KCvLatUASATAUSUTU˙S˙TU˙S=U˙T
43 20 25 10 26 38 41 42 syl132anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙S˙TU˙S=U˙T
44 17 43 mpd KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙S=U˙T
45 44 adantr KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙T˙zU˙S=U˙T
46 simp3lr KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬z˙W
47 nbrne2 U˙W¬z˙WUz
48 35 46 47 syl2anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zUz
49 1 2 4 cvlatexch3 KCvLatUATAzAUTUzU˙T˙zU˙T=U˙z
50 20 25 26 13 41 48 49 syl132anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙T˙zU˙T=U˙z
51 50 imp KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙T˙zU˙T=U˙z
52 45 51 eqtrd KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙T˙zU˙S=U˙z
53 52 ex KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙T˙zU˙S=U˙z
54 1 2 4 hlatlej2 KHLUASAS˙U˙S
55 18 25 10 54 syl3anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zS˙U˙S
56 breq2 U˙S=U˙zS˙U˙SS˙U˙z
57 55 56 syl5ibcom KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙S=U˙zS˙U˙z
58 1 2 4 cdleme21a KHLPAQASA¬S˙P˙QzAP˙z=S˙zSz
59 18 22 9 10 12 13 14 58 syl322anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zSz
60 1 2 4 cvlatexch2 KCvLatSAUAzASzS˙U˙zU˙S˙z
61 20 10 25 13 59 60 syl131anc KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zS˙U˙zU˙S˙z
62 53 57 61 3syld KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙zU˙T˙zU˙S˙z
63 16 62 mtod KHLWHPA¬P˙WQASA¬S˙WTA¬T˙WPQ¬S˙P˙QU˙S˙TzA¬z˙WP˙z=S˙z¬U˙T˙z