Metamath Proof Explorer


Theorem cdleme48bw

Description: TODO: fix comment. TODO: Remove unnecessary P =/= Q from cdleme48bw cdlemeg46c cdlemeg46fvaw cdlemeg46rgv cdlemeg46gfv ? cdleme48d ? and possibly others they affect. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B=BaseK
cdlemef46.l ˙=K
cdlemef46.j ˙=joinK
cdlemef46.m ˙=meetK
cdlemef46.a A=AtomsK
cdlemef46.h H=LHypK
cdlemef46.u U=P˙Q˙W
cdlemef46.d D=t˙U˙Q˙P˙t˙W
cdlemefs46.e E=P˙Q˙D˙s˙t˙W
cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme48bw KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=X¬FX˙W

Proof

Step Hyp Ref Expression
1 cdlemef46.b B=BaseK
2 cdlemef46.l ˙=K
3 cdlemef46.j ˙=joinK
4 cdlemef46.m ˙=meetK
5 cdlemef46.a A=AtomsK
6 cdlemef46.h H=LHypK
7 cdlemef46.u U=P˙Q˙W
8 cdlemef46.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 simp1 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XKHLWHPA¬P˙WQA¬Q˙W
12 simp3l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XSA¬S˙W
13 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFSA¬FS˙W
14 11 12 13 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFSA¬FS˙W
15 14 simprd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=X¬FS˙W
16 simp11l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XKHL
17 16 hllatd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XKLat
18 14 simpld KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFSA
19 1 5 atbase FSAFSB
20 18 19 syl KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFSB
21 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XXB
22 simp11r KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XWH
23 1 6 lhpbase WHWB
24 22 23 syl KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XWB
25 1 4 latmcl KLatXBWBX˙WB
26 17 21 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XX˙WB
27 1 2 3 latlej1 KLatFSBX˙WBFS˙FS˙X˙W
28 17 20 26 27 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFS˙FS˙X˙W
29 1 2 3 4 5 6 7 8 9 10 cdleme48fv KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX=FS˙X˙W
30 28 29 breqtrrd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFS˙FX
31 vex sV
32 eqid s˙U˙Q˙P˙s˙W=s˙U˙Q˙P˙s˙W
33 8 32 cdleme31sc sVs/tD=s˙U˙Q˙P˙s˙W
34 31 33 ax-mp s/tD=s˙U˙Q˙P˙s˙W
35 eqid ιyB|tA¬t˙W¬t˙P˙Qy=E=ιyB|tA¬t˙W¬t˙P˙Qy=E
36 eqid ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD
37 eqid ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W
38 1 2 3 4 5 6 7 34 8 9 35 36 37 10 cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WXBFXB
39 11 21 38 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFXB
40 1 2 lattr KLatFSBFXBWBFS˙FXFX˙WFS˙W
41 17 20 39 24 40 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFS˙FXFX˙WFS˙W
42 30 41 mpand KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX˙WFS˙W
43 15 42 mtod KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=X¬FX˙W