Metamath Proof Explorer


Theorem cdleme7aa

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙=K
cdleme4.j ˙=joinK
cdleme4.m ˙=meetK
cdleme4.a A=AtomsK
cdleme4.h H=LHypK
cdleme4.u U=P˙Q˙W
cdleme4.f F=S˙U˙Q˙P˙S˙W
cdleme4.g G=P˙Q˙F˙R˙S˙W
Assertion cdleme7aa KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬R˙U˙S

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙=K
2 cdleme4.j ˙=joinK
3 cdleme4.m ˙=meetK
4 cdleme4.a A=AtomsK
5 cdleme4.h H=LHypK
6 cdleme4.u U=P˙Q˙W
7 cdleme4.f F=S˙U˙Q˙P˙S˙W
8 cdleme4.g G=P˙Q˙F˙R˙S˙W
9 simp33 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬S˙P˙Q
10 simp11l KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKHL
11 simp2ll KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA
12 simp2rl KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QSA
13 simp11 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKHLWH
14 simp12 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPA¬P˙W
15 simp13 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QQA
16 simp31 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPQ
17 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
18 13 14 15 16 17 syl112anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUA
19 10 hllatd KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKLat
20 simp12l KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPA
21 eqid BaseK=BaseK
22 21 2 4 hlatjcl KHLPAQAP˙QBaseK
23 10 20 15 22 syl3anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙QBaseK
24 simp11r KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QWH
25 21 5 lhpbase WHWBaseK
26 24 25 syl KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QWBaseK
27 21 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
28 19 23 26 27 syl3anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙W˙W
29 6 28 eqbrtrid KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙W
30 simp2lr KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬R˙W
31 nbrne2 U˙W¬R˙WUR
32 31 necomd U˙W¬R˙WRU
33 29 30 32 syl2anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRU
34 1 2 4 hlatexch1 KHLRASAUARUR˙U˙SS˙U˙R
35 10 11 12 18 33 34 syl131anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙U˙SS˙U˙R
36 simp2l KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA¬R˙W
37 simp32 KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙P˙Q
38 1 2 3 4 5 6 cdleme4 KHLWHPAQARA¬R˙WR˙P˙QP˙Q=R˙U
39 13 20 15 36 37 38 syl131anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q=R˙U
40 2 4 hlatjcom KHLRAUAR˙U=U˙R
41 10 11 18 40 syl3anc KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙U=U˙R
42 39 41 eqtrd KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q=U˙R
43 42 breq2d KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QS˙P˙QS˙U˙R
44 35 43 sylibrd KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙U˙SS˙P˙Q
45 9 44 mtod KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬R˙U˙S