Metamath Proof Explorer


Theorem cdleme7d

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 8-Jun-2012)

Ref Expression
Hypotheses cdleme4.l ˙=K
cdleme4.j ˙=joinK
cdleme4.m ˙=meetK
cdleme4.a A=AtomsK
cdleme4.h H=LHypK
cdleme4.u U=P˙Q˙W
cdleme4.f F=S˙U˙Q˙P˙S˙W
cdleme4.g G=P˙Q˙F˙R˙S˙W
cdleme7.v V=R˙S˙W
Assertion cdleme7d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QGU

Proof

Step Hyp Ref Expression
1 cdleme4.l ˙=K
2 cdleme4.j ˙=joinK
3 cdleme4.m ˙=meetK
4 cdleme4.a A=AtomsK
5 cdleme4.h H=LHypK
6 cdleme4.u U=P˙Q˙W
7 cdleme4.f F=S˙U˙Q˙P˙S˙W
8 cdleme4.g G=P˙Q˙F˙R˙S˙W
9 cdleme7.v V=R˙S˙W
10 1 2 3 4 5 6 7 8 9 cdleme7a G=P˙Q˙F˙V
11 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKHL
12 11 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKLat
13 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPA
14 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QQA
15 eqid BaseK=BaseK
16 15 2 4 hlatjcl KHLPAQAP˙QBaseK
17 11 13 14 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙QBaseK
18 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QKHLWH
19 simp12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPA¬P˙W
20 simp13 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QQA¬Q˙W
21 simp2r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QSA¬S˙W
22 simp31 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPQ
23 simp33 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬S˙P˙Q
24 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFA
25 18 19 20 21 22 23 24 syl132anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QFA
26 simp2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA¬R˙W
27 simp2rl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QSA
28 simp32 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙P˙Q
29 1 2 3 4 5 6 7 8 9 cdleme7b KHLWHRA¬R˙WSA¬S˙P˙QR˙P˙QVA
30 18 26 27 23 28 29 syl113anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QVA
31 15 2 4 hlatjcl KHLFAVAF˙VBaseK
32 11 25 30 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QF˙VBaseK
33 15 1 3 latmle2 KLatP˙QBaseKF˙VBaseKP˙Q˙F˙V˙F˙V
34 12 17 32 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙F˙V˙F˙V
35 10 34 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QG˙F˙V
36 1 2 3 4 5 6 7 cdleme3 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬F˙W
37 18 19 20 21 22 23 36 syl132anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬F˙W
38 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
39 18 19 14 22 38 syl112anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUA
40 simp2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA¬R˙WSA¬S˙W
41 simp3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QPQR˙P˙Q¬S˙P˙Q
42 1 2 3 4 5 6 7 8 9 cdleme7c KHLWHPA¬P˙WQARA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUV
43 18 19 14 40 41 42 syl311anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUV
44 1 2 4 hlatexch2 KHLUAFAVAUVU˙F˙VF˙U˙V
45 11 39 25 30 43 44 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙F˙VF˙U˙V
46 simp11r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QWH
47 15 5 lhpbase WHWBaseK
48 46 47 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QWBaseK
49 15 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
50 12 17 48 49 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QP˙Q˙W˙W
51 6 50 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙W
52 simp2ll KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QRA
53 15 2 4 hlatjcl KHLRASAR˙SBaseK
54 11 52 27 53 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙SBaseK
55 15 1 3 latmle2 KLatR˙SBaseKWBaseKR˙S˙W˙W
56 12 54 48 55 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QR˙S˙W˙W
57 9 56 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QV˙W
58 15 4 atbase UAUBaseK
59 39 58 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QUBaseK
60 15 4 atbase VAVBaseK
61 30 60 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QVBaseK
62 15 1 2 latjle12 KLatUBaseKVBaseKWBaseKU˙WV˙WU˙V˙W
63 12 59 61 48 62 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙WV˙WU˙V˙W
64 51 57 63 mpbi2and KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙V˙W
65 15 4 atbase FAFBaseK
66 25 65 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QFBaseK
67 15 2 4 hlatjcl KHLUAVAU˙VBaseK
68 11 39 30 67 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙VBaseK
69 15 1 lattr KLatFBaseKU˙VBaseKWBaseKF˙U˙VU˙V˙WF˙W
70 12 66 68 48 69 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QF˙U˙VU˙V˙WF˙W
71 64 70 mpan2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QF˙U˙VF˙W
72 45 71 syld KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QU˙F˙VF˙W
73 37 72 mtod KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙Q¬U˙F˙V
74 nbrne2 G˙F˙V¬U˙F˙VGU
75 35 73 74 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WPQR˙P˙Q¬S˙P˙QGU