Metamath Proof Explorer


Theorem cdlemeg46frv

Description: TODO FIX COMMENT. (f(r) \/ v_2) /\ w = v_2 p. 116 3rd line. (Contributed by NM, 2-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b B=BaseK
cdlemef46g.l ˙=K
cdlemef46g.j ˙=joinK
cdlemef46g.m ˙=meetK
cdlemef46g.a A=AtomsK
cdlemef46g.h H=LHypK
cdlemef46g.u U=P˙Q˙W
cdlemef46g.d D=t˙U˙Q˙P˙t˙W
cdlemefs46g.e E=P˙Q˙D˙s˙t˙W
cdlemef46g.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemef46.v V=Q˙P˙W
cdlemef46.n N=v˙V˙P˙Q˙v˙W
cdlemefs46.o O=Q˙P˙N˙u˙v˙W
cdlemef46.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
cdlemeg46.y Y=R˙GS˙W
Assertion cdlemeg46frv KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR˙Y˙W=Y

Proof

Step Hyp Ref Expression
1 cdlemef46g.b B=BaseK
2 cdlemef46g.l ˙=K
3 cdlemef46g.j ˙=joinK
4 cdlemef46g.m ˙=meetK
5 cdlemef46g.a A=AtomsK
6 cdlemef46g.h H=LHypK
7 cdlemef46g.u U=P˙Q˙W
8 cdlemef46g.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46g.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46g.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 cdlemef46.v V=Q˙P˙W
12 cdlemef46.n N=v˙V˙P˙Q˙v˙W
13 cdlemefs46.o O=Q˙P˙N˙u˙v˙W
14 cdlemef46.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
15 cdlemeg46.y Y=R˙GS˙W
16 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWH
17 simp1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWHPA¬P˙WQA¬Q˙W
18 simp22 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA¬R˙W
19 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WFRA¬FR˙W
20 17 18 19 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFRA¬FR˙W
21 eqid 0.K=0.K
22 2 4 21 5 6 lhpmat KHLWHFRA¬FR˙WFR˙W=0.K
23 16 20 22 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR˙W=0.K
24 23 oveq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR˙W˙Y=0.K˙Y
25 simp11l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHL
26 20 simpld KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFRA
27 simp22l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA
28 simp23 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSA¬S˙W
29 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPQ
30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46fvaw KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQGSA¬GS˙W
31 30 simpld KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQGSA
32 17 28 29 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGSA
33 2 3 4 5 6 15 1 cdleme0aa KHLWHRAGSAYB
34 16 27 32 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QYB
35 simp11r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QWH
36 1 6 lhpbase WHWB
37 35 36 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QWB
38 25 hllatd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKLat
39 1 3 5 hlatjcl KHLRAGSAR˙GSB
40 25 27 32 39 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙GSB
41 1 2 4 latmle2 KLatR˙GSBWBR˙GS˙W˙W
42 38 40 37 41 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙GS˙W˙W
43 15 42 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QY˙W
44 1 2 3 4 5 atmod4i2 KHLFRAYBWBY˙WFR˙W˙Y=FR˙Y˙W
45 25 26 34 37 43 44 syl131anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR˙W˙Y=FR˙Y˙W
46 hlol KHLKOL
47 25 46 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKOL
48 1 3 21 olj02 KOLYB0.K˙Y=Y
49 47 34 48 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q0.K˙Y=Y
50 24 45 49 3eqtr3d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR˙Y˙W=Y