Metamath Proof Explorer


Theorem cdlemeg46req

Description: TODO FIX COMMENT r = (v_1 \/ g(s)) p. 116 3rd line. (Contributed by NM, 3-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b B=BaseK
cdlemef46g.l ˙=K
cdlemef46g.j ˙=joinK
cdlemef46g.m ˙=meetK
cdlemef46g.a A=AtomsK
cdlemef46g.h H=LHypK
cdlemef46g.u U=P˙Q˙W
cdlemef46g.d D=t˙U˙Q˙P˙t˙W
cdlemefs46g.e E=P˙Q˙D˙s˙t˙W
cdlemef46g.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemef46.v V=Q˙P˙W
cdlemef46.n N=v˙V˙P˙Q˙v˙W
cdlemefs46.o O=Q˙P˙N˙u˙v˙W
cdlemef46.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
cdlemeg46.y Y=R˙GS˙W
cdlemeg46.x X=FR˙S˙W
Assertion cdlemeg46req KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR=P˙Q˙GS˙X

Proof

Step Hyp Ref Expression
1 cdlemef46g.b B=BaseK
2 cdlemef46g.l ˙=K
3 cdlemef46g.j ˙=joinK
4 cdlemef46g.m ˙=meetK
5 cdlemef46g.a A=AtomsK
6 cdlemef46g.h H=LHypK
7 cdlemef46g.u U=P˙Q˙W
8 cdlemef46g.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46g.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46g.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 cdlemef46.v V=Q˙P˙W
12 cdlemef46.n N=v˙V˙P˙Q˙v˙W
13 cdlemefs46.o O=Q˙P˙N˙u˙v˙W
14 cdlemef46.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
15 cdlemeg46.y Y=R˙GS˙W
16 cdlemeg46.x X=FR˙S˙W
17 simp11l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHL
18 simp12l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPA
19 simp13l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QQA
20 simp21 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QPQ
21 eqid LLinesK=LLinesK
22 3 5 21 llni2 KHLPAQAPQP˙QLLinesK
23 17 18 19 20 22 syl31anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QP˙QLLinesK
24 simp1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWHPA¬P˙WQA¬Q˙W
25 simp23 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSA¬S˙W
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46fvaw KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQGSA¬GS˙W
27 24 25 20 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGSA¬GS˙W
28 27 simpld KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGSA
29 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKHLWH
30 simp22 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA¬R˙W
31 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WFRA¬FR˙W
32 24 30 31 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFRA¬FR˙W
33 simp23l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSA
34 simp3l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙P˙Q
35 1 2 3 4 5 6 7 8 9 10 cdleme46fsvlpq KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR˙P˙QFR˙P˙Q
36 24 20 30 34 35 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR˙P˙Q
37 simp3r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬S˙P˙Q
38 nbrne2 FR˙P˙Q¬S˙P˙QFRS
39 36 37 38 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFRS
40 2 3 4 5 6 16 lhpat2 KHLWHFRA¬FR˙WSAFRSXA
41 29 32 33 39 40 syl112anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QXA
42 17 hllatd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QKLat
43 32 simpld KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFRA
44 1 3 5 hlatjcl KHLFRASAFR˙SB
45 17 43 33 44 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR˙SB
46 simp11r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QWH
47 1 6 lhpbase WHWB
48 46 47 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QWB
49 1 2 4 latmle2 KLatFR˙SBWBFR˙S˙W˙W
50 42 45 48 49 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR˙S˙W˙W
51 16 50 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QX˙W
52 27 simprd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬GS˙W
53 nbrne2 X˙W¬GS˙WXGS
54 51 52 53 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QXGS
55 54 necomd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGSX
56 3 5 21 llni2 KHLGSAXAGSXGS˙XLLinesK
57 17 28 41 55 56 syl31anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGS˙XLLinesK
58 simp22l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA
59 2 3 5 hlatlej1 KHLGSAXAGS˙GS˙X
60 17 28 41 59 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGS˙GS˙X
61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46nlpq KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙W¬S˙P˙Q¬GS˙P˙Q
62 24 20 25 37 61 syl121anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙Q¬GS˙P˙Q
63 nbrne1 GS˙GS˙X¬GS˙P˙QGS˙XP˙Q
64 60 62 63 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGS˙XP˙Q
65 64 necomd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QP˙QGS˙X
66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 cdlemeg46rgv KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙GS˙X
67 1 5 atbase RARB
68 58 67 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRB
69 1 3 5 hlatjcl KHLPAQAP˙QB
70 17 18 19 69 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QP˙QB
71 1 3 5 hlatjcl KHLGSAXAGS˙XB
72 17 28 41 71 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QGS˙XB
73 1 2 4 latlem12 KLatRBP˙QBGS˙XBR˙P˙QR˙GS˙XR˙P˙Q˙GS˙X
74 42 68 70 72 73 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙P˙QR˙GS˙XR˙P˙Q˙GS˙X
75 34 66 74 mpbi2and KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR˙P˙Q˙GS˙X
76 2 4 5 21 2llnmeqat KHLP˙QLLinesKGS˙XLLinesKRAP˙QGS˙XR˙P˙Q˙GS˙XR=P˙Q˙GS˙X
77 17 23 57 58 65 75 76 syl132anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR=P˙Q˙GS˙X