Metamath Proof Explorer


Theorem cdlemg17h

Description: TODO: fix comment. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg17h KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rS=FPS=FQ

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHL
9 simp23r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rS˙FP˙FQ
10 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
11 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFT
12 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rSA
13 1 4 5 6 ltrncnvat KHLWHFTSAF-1SA
14 10 11 12 13 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1SA
15 eqid BaseK=BaseK
16 15 4 atbase F-1SAF-1SBaseK
17 14 16 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1SBaseK
18 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPA
19 simp13l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rQA
20 15 2 4 hlatjcl KHLPAQAP˙QBaseK
21 8 18 19 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙QBaseK
22 15 1 5 6 ltrnle KHLWHFTF-1SBaseKP˙QBaseKF-1S˙P˙QFF-1S˙FP˙Q
23 10 11 17 21 22 syl112anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1S˙P˙QFF-1S˙FP˙Q
24 15 5 6 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
25 10 11 24 syl2anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF:BaseK1-1 ontoBaseK
26 15 4 atbase SASBaseK
27 12 26 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rSBaseK
28 f1ocnvfv2 F:BaseK1-1 ontoBaseKSBaseKFF-1S=S
29 25 27 28 syl2anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFF-1S=S
30 15 4 atbase PAPBaseK
31 18 30 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPBaseK
32 15 4 atbase QAQBaseK
33 19 32 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rQBaseK
34 15 2 5 6 ltrnj KHLWHFTPBaseKQBaseKFP˙Q=FP˙FQ
35 10 11 31 33 34 syl112anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙Q=FP˙FQ
36 29 35 breq12d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFF-1S˙FP˙QS˙FP˙FQ
37 23 36 bitr2d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rS˙FP˙FQF-1S˙P˙Q
38 9 37 mpbid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1S˙P˙Q
39 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
40 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPQ
41 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rSA¬S˙W
42 1 4 5 6 ltrncnvel KHLWHFTSA¬S˙WF-1SA¬F-1S˙W
43 10 11 41 42 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1SA¬F-1S˙W
44 1 2 4 cdleme0nex KHLF-1S˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQF-1SA¬F-1S˙WF-1S=PF-1S=Q
45 8 38 39 18 19 40 43 44 syl331anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1S=PF-1S=Q
46 f1ocnvfvb F:BaseK1-1 ontoBaseKPBaseKSBaseKFP=SF-1S=P
47 25 31 27 46 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP=SF-1S=P
48 eqcom FP=SS=FP
49 47 48 bitr3di KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1S=PS=FP
50 f1ocnvfvb F:BaseK1-1 ontoBaseKQBaseKSBaseKFQ=SF-1S=Q
51 25 33 27 50 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFQ=SF-1S=Q
52 eqcom FQ=SS=FQ
53 51 52 bitr3di KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1S=QS=FQ
54 49 53 orbi12d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rF-1S=PF-1S=QS=FPS=FQ
55 45 54 mpbid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFTGTPQS˙FP˙FQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rS=FPS=FQ