Description: For use with case when ( P .\/ v ) ./\ ( Q .\/ ( RF ) ) or ( P .\/ v ) ./\ ( Q .\/ ( RF ) ) is zero, letting us establish -. z .<_ W /\ z .<_ ( P .\/ v ) via 4atex . TODO: Fix comment. (Contributed by NM, 28-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg12.l | |
|
cdlemg12.j | |
||
cdlemg12.m | |
||
cdlemg12.a | |
||
cdlemg12.h | |
||
cdlemg12.t | |
||
cdlemg12b.r | |
||
Assertion | cdlemg27a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg12.l | |
|
2 | cdlemg12.j | |
|
3 | cdlemg12.m | |
|
4 | cdlemg12.a | |
|
5 | cdlemg12.h | |
|
6 | cdlemg12.t | |
|
7 | cdlemg12b.r | |
|
8 | simp11 | |
|
9 | simp12 | |
|
10 | simp31 | |
|
11 | simp13 | |
|
12 | simp2r | |
|
13 | simp33 | |
|
14 | 1 4 5 6 7 | trlat | |
15 | 8 9 12 13 14 | syl112anc | |
16 | 1 5 6 7 | trlle | |
17 | 8 12 16 | syl2anc | |
18 | 1 2 4 5 | lhp2atnle | |
19 | 8 9 10 11 15 17 18 | syl312anc | |
20 | simp11l | |
|
21 | simp12l | |
|
22 | simp13l | |
|
23 | 1 2 4 | hlatlej1 | |
24 | 20 21 22 23 | syl3anc | |
25 | simp32 | |
|
26 | 20 | hllatd | |
27 | eqid | |
|
28 | 27 4 | atbase | |
29 | 21 28 | syl | |
30 | simp2l | |
|
31 | 27 4 | atbase | |
32 | 30 31 | syl | |
33 | 27 2 4 | hlatjcl | |
34 | 20 21 22 33 | syl3anc | |
35 | 27 1 2 | latjle12 | |
36 | 26 29 32 34 35 | syl13anc | |
37 | 24 25 36 | mpbi2and | |
38 | 27 4 | atbase | |
39 | 15 38 | syl | |
40 | 27 2 4 | hlatjcl | |
41 | 20 21 30 40 | syl3anc | |
42 | 27 1 | lattr | |
43 | 26 39 41 34 42 | syl13anc | |
44 | 37 43 | mpan2d | |
45 | 19 44 | mtod | |