Metamath Proof Explorer


Theorem cdlemg27a

Description: For use with case when ( P .\/ v ) ./\ ( Q .\/ ( RF ) ) or ( P .\/ v ) ./\ ( Q .\/ ( RF ) ) is zero, letting us establish -. z .<_ W /\ z .<_ ( P .\/ v ) via 4atex . TODO: Fix comment. (Contributed by NM, 28-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg27a KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPP¬RF˙P˙z

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11 KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPKHLWH
9 simp12 KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPPA¬P˙W
10 simp31 KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPvRF
11 simp13 KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPvAv˙W
12 simp2r KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPFT
13 simp33 KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPFPP
14 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
15 8 9 12 13 14 syl112anc KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPRFA
16 1 5 6 7 trlle KHLWHFTRF˙W
17 8 12 16 syl2anc KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPRF˙W
18 1 2 4 5 lhp2atnle KHLWHPA¬P˙WvRFvAv˙WRFARF˙W¬RF˙P˙v
19 8 9 10 11 15 17 18 syl312anc KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPP¬RF˙P˙v
20 simp11l KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPKHL
21 simp12l KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPPA
22 simp13l KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPvA
23 1 2 4 hlatlej1 KHLPAvAP˙P˙v
24 20 21 22 23 syl3anc KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPP˙P˙v
25 simp32 KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPz˙P˙v
26 20 hllatd KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPKLat
27 eqid BaseK=BaseK
28 27 4 atbase PAPBaseK
29 21 28 syl KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPPBaseK
30 simp2l KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPzA
31 27 4 atbase zAzBaseK
32 30 31 syl KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPzBaseK
33 27 2 4 hlatjcl KHLPAvAP˙vBaseK
34 20 21 22 33 syl3anc KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPP˙vBaseK
35 27 1 2 latjle12 KLatPBaseKzBaseKP˙vBaseKP˙P˙vz˙P˙vP˙z˙P˙v
36 26 29 32 34 35 syl13anc KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPP˙P˙vz˙P˙vP˙z˙P˙v
37 24 25 36 mpbi2and KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPP˙z˙P˙v
38 27 4 atbase RFARFBaseK
39 15 38 syl KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPRFBaseK
40 27 2 4 hlatjcl KHLPAzAP˙zBaseK
41 20 21 30 40 syl3anc KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPP˙zBaseK
42 27 1 lattr KLatRFBaseKP˙zBaseKP˙vBaseKRF˙P˙zP˙z˙P˙vRF˙P˙v
43 26 39 41 34 42 syl13anc KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPRF˙P˙zP˙z˙P˙vRF˙P˙v
44 37 43 mpan2d KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPPRF˙P˙zRF˙P˙v
45 19 44 mtod KHLWHPA¬P˙WvAv˙WzAFTvRFz˙P˙vFPP¬RF˙P˙z