| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk1.b |
|
| 2 |
|
cdlemk1.l |
|
| 3 |
|
cdlemk1.j |
|
| 4 |
|
cdlemk1.m |
|
| 5 |
|
cdlemk1.a |
|
| 6 |
|
cdlemk1.h |
|
| 7 |
|
cdlemk1.t |
|
| 8 |
|
cdlemk1.r |
|
| 9 |
|
cdlemk1.s |
|
| 10 |
|
cdlemk1.o |
|
| 11 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk13 |
|
| 12 |
|
simp11l |
|
| 13 |
12
|
hllatd |
|
| 14 |
|
simp22l |
|
| 15 |
|
simp11 |
|
| 16 |
|
simp13 |
|
| 17 |
|
simp32 |
|
| 18 |
1 5 6 7 8
|
trlnidat |
|
| 19 |
15 16 17 18
|
syl3anc |
|
| 20 |
1 3 5
|
hlatjcl |
|
| 21 |
12 14 19 20
|
syl3anc |
|
| 22 |
|
simp21 |
|
| 23 |
2 5 6 7
|
ltrnat |
|
| 24 |
15 22 14 23
|
syl3anc |
|
| 25 |
|
simp12 |
|
| 26 |
|
simp33 |
|
| 27 |
5 6 7 8
|
trlcocnvat |
|
| 28 |
15 16 25 26 27
|
syl121anc |
|
| 29 |
1 3 5
|
hlatjcl |
|
| 30 |
12 24 28 29
|
syl3anc |
|
| 31 |
1 2 4
|
latmle2 |
|
| 32 |
13 21 30 31
|
syl3anc |
|
| 33 |
11 32
|
eqbrtrd |
|
| 34 |
10
|
fveq1i |
|
| 35 |
1 2 3 5 6 7 8 4 9
|
cdlemksat |
|
| 36 |
34 35
|
eqeltrid |
|
| 37 |
6 7
|
ltrncnv |
|
| 38 |
15 25 37
|
syl2anc |
|
| 39 |
6 7
|
ltrnco |
|
| 40 |
15 16 38 39
|
syl3anc |
|
| 41 |
2 6 7 8
|
trlle |
|
| 42 |
15 40 41
|
syl2anc |
|
| 43 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkoatnle |
|
| 44 |
43
|
simprd |
|
| 45 |
|
nbrne2 |
|
| 46 |
42 44 45
|
syl2anc |
|
| 47 |
46
|
necomd |
|
| 48 |
2 3 5
|
hlatexch2 |
|
| 49 |
12 36 24 28 47 48
|
syl131anc |
|
| 50 |
33 49
|
mpd |
|
| 51 |
6 7 8
|
trlcocnv |
|
| 52 |
15 16 25 51
|
syl3anc |
|
| 53 |
52
|
oveq2d |
|
| 54 |
50 53
|
breqtrd |
|