Metamath Proof Explorer


Theorem cdlemk56

Description: Part of Lemma K of Crawley p. 118. Line 11, p. 120, "tau is in Delta" i.e. U is a trace-preserving endormorphism. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk5.u U=gTifF=NgX
cdlemk5.e E=TEndoKW
Assertion cdlemk56 KHLWHFTNTRF=RNPA¬P˙WUE

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 cdlemk5.u U=gTifF=NgX
13 cdlemk5.e E=TEndoKW
14 simp11 KHLWHFTNTRF=RNPA¬P˙WKHLWH
15 vex gV
16 riotaex ιzT|bTbIBRbRFRbRgzP=YV
17 11 16 eqeltri XV
18 15 17 ifex ifF=NgXV
19 18 rgenw gTifF=NgXV
20 12 fnmpt gTifF=NgXVUFnT
21 19 20 mp1i KHLWHFTNTRF=RNPA¬P˙WUFnT
22 simpl11 KHLWHFTNTRF=RNPA¬P˙WfTKHLWH
23 simpl2 KHLWHFTNTRF=RNPA¬P˙WfTRF=RN
24 simpl12 KHLWHFTNTRF=RNPA¬P˙WfTFT
25 simpl13 KHLWHFTNTRF=RNPA¬P˙WfTNT
26 simpr KHLWHFTNTRF=RNPA¬P˙WfTfT
27 simpl3 KHLWHFTNTRF=RNPA¬P˙WfTPA¬P˙W
28 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk35u KHLWHRF=RNFTNTfTPA¬P˙WUfT
29 22 23 24 25 26 27 28 syl231anc KHLWHFTNTRF=RNPA¬P˙WfTUfT
30 29 ralrimiva KHLWHFTNTRF=RNPA¬P˙WfTUfT
31 ffnfv U:TTUFnTfTUfT
32 21 30 31 sylanbrc KHLWHFTNTRF=RNPA¬P˙WU:TT
33 simp11 KHLWHFTNTRF=RNPA¬P˙WfThTKHLWHFTNT
34 simp12 KHLWHFTNTRF=RNPA¬P˙WfThTRF=RN
35 simp2 KHLWHFTNTRF=RNPA¬P˙WfThTfT
36 simp3 KHLWHFTNTRF=RNPA¬P˙WfThThT
37 simp13 KHLWHFTNTRF=RNPA¬P˙WfThTPA¬P˙W
38 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk55u KHLWHFTNTRF=RNfThTPA¬P˙WUfh=UfUh
39 33 34 35 36 37 38 syl131anc KHLWHFTNTRF=RNPA¬P˙WfThTUfh=UfUh
40 simpl1 KHLWHFTNTRF=RNPA¬P˙WfTKHLWHFTNT
41 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk39u KHLWHFTNTRF=RNfTPA¬P˙WRUf˙Rf
42 40 23 26 27 41 syl121anc KHLWHFTNTRF=RNPA¬P˙WfTRUf˙Rf
43 2 6 7 8 13 14 32 39 42 istendod KHLWHFTNTRF=RNPA¬P˙WUE