| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk5.b |  | 
						
							| 2 |  | cdlemk5.l |  | 
						
							| 3 |  | cdlemk5.j |  | 
						
							| 4 |  | cdlemk5.m |  | 
						
							| 5 |  | cdlemk5.a |  | 
						
							| 6 |  | cdlemk5.h |  | 
						
							| 7 |  | cdlemk5.t |  | 
						
							| 8 |  | cdlemk5.r |  | 
						
							| 9 |  | cdlemk5.z |  | 
						
							| 10 |  | cdlemk5.y |  | 
						
							| 11 |  | cdlemk5.x |  | 
						
							| 12 |  | cdlemk5.u |  | 
						
							| 13 |  | cdlemk5.e |  | 
						
							| 14 |  | simp11 |  | 
						
							| 15 |  | vex |  | 
						
							| 16 |  | riotaex |  | 
						
							| 17 | 11 16 | eqeltri |  | 
						
							| 18 | 15 17 | ifex |  | 
						
							| 19 | 18 | rgenw |  | 
						
							| 20 | 12 | fnmpt |  | 
						
							| 21 | 19 20 | mp1i |  | 
						
							| 22 |  | simpl11 |  | 
						
							| 23 |  | simpl2 |  | 
						
							| 24 |  | simpl12 |  | 
						
							| 25 |  | simpl13 |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 |  | simpl3 |  | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdlemk35u |  | 
						
							| 29 | 22 23 24 25 26 27 28 | syl231anc |  | 
						
							| 30 | 29 | ralrimiva |  | 
						
							| 31 |  | ffnfv |  | 
						
							| 32 | 21 30 31 | sylanbrc |  | 
						
							| 33 |  | simp11 |  | 
						
							| 34 |  | simp12 |  | 
						
							| 35 |  | simp2 |  | 
						
							| 36 |  | simp3 |  | 
						
							| 37 |  | simp13 |  | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdlemk55u |  | 
						
							| 39 | 33 34 35 36 37 38 | syl131anc |  | 
						
							| 40 |  | simpl1 |  | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdlemk39u |  | 
						
							| 42 | 40 23 26 27 41 | syl121anc |  | 
						
							| 43 | 2 6 7 8 13 14 32 39 42 | istendod |  |