Metamath Proof Explorer


Theorem cdlemkvcl

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 27-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B=BaseK
cdlemk.l ˙=K
cdlemk.j ˙=joinK
cdlemk.a A=AtomsK
cdlemk.h H=LHypK
cdlemk.t T=LTrnKW
cdlemk.r R=trLKW
cdlemk.m ˙=meetK
cdlemk.v1 V=GP˙XP˙RGF-1˙RXF-1
Assertion cdlemkvcl KHLWHFTGTXTPAVB

Proof

Step Hyp Ref Expression
1 cdlemk.b B=BaseK
2 cdlemk.l ˙=K
3 cdlemk.j ˙=joinK
4 cdlemk.a A=AtomsK
5 cdlemk.h H=LHypK
6 cdlemk.t T=LTrnKW
7 cdlemk.r R=trLKW
8 cdlemk.m ˙=meetK
9 cdlemk.v1 V=GP˙XP˙RGF-1˙RXF-1
10 simp1l KHLWHFTGTXTPAKHL
11 10 hllatd KHLWHFTGTXTPAKLat
12 simp1 KHLWHFTGTXTPAKHLWH
13 simp22 KHLWHFTGTXTPAGT
14 1 4 atbase PAPB
15 14 3ad2ant3 KHLWHFTGTXTPAPB
16 1 5 6 ltrncl KHLWHGTPBGPB
17 12 13 15 16 syl3anc KHLWHFTGTXTPAGPB
18 simp23 KHLWHFTGTXTPAXT
19 1 5 6 ltrncl KHLWHXTPBXPB
20 12 18 15 19 syl3anc KHLWHFTGTXTPAXPB
21 1 3 latjcl KLatGPBXPBGP˙XPB
22 11 17 20 21 syl3anc KHLWHFTGTXTPAGP˙XPB
23 simp21 KHLWHFTGTXTPAFT
24 5 6 ltrncnv KHLWHFTF-1T
25 12 23 24 syl2anc KHLWHFTGTXTPAF-1T
26 5 6 ltrnco KHLWHGTF-1TGF-1T
27 12 13 25 26 syl3anc KHLWHFTGTXTPAGF-1T
28 1 5 6 7 trlcl KHLWHGF-1TRGF-1B
29 12 27 28 syl2anc KHLWHFTGTXTPARGF-1B
30 5 6 ltrnco KHLWHXTF-1TXF-1T
31 12 18 25 30 syl3anc KHLWHFTGTXTPAXF-1T
32 1 5 6 7 trlcl KHLWHXF-1TRXF-1B
33 12 31 32 syl2anc KHLWHFTGTXTPARXF-1B
34 1 3 latjcl KLatRGF-1BRXF-1BRGF-1˙RXF-1B
35 11 29 33 34 syl3anc KHLWHFTGTXTPARGF-1˙RXF-1B
36 1 8 latmcl KLatGP˙XPBRGF-1˙RXF-1BGP˙XP˙RGF-1˙RXF-1B
37 11 22 35 36 syl3anc KHLWHFTGTXTPAGP˙XP˙RGF-1˙RXF-1B
38 9 37 eqeltrid KHLWHFTGTXTPAVB