Metamath Proof Explorer


Theorem cdlemkvcl

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 27-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
cdlemk.v1 V = G P ˙ X P ˙ R G F -1 ˙ R X F -1
Assertion cdlemkvcl K HL W H F T G T X T P A V B

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 cdlemk.v1 V = G P ˙ X P ˙ R G F -1 ˙ R X F -1
10 simp1l K HL W H F T G T X T P A K HL
11 10 hllatd K HL W H F T G T X T P A K Lat
12 simp1 K HL W H F T G T X T P A K HL W H
13 simp22 K HL W H F T G T X T P A G T
14 1 4 atbase P A P B
15 14 3ad2ant3 K HL W H F T G T X T P A P B
16 1 5 6 ltrncl K HL W H G T P B G P B
17 12 13 15 16 syl3anc K HL W H F T G T X T P A G P B
18 simp23 K HL W H F T G T X T P A X T
19 1 5 6 ltrncl K HL W H X T P B X P B
20 12 18 15 19 syl3anc K HL W H F T G T X T P A X P B
21 1 3 latjcl K Lat G P B X P B G P ˙ X P B
22 11 17 20 21 syl3anc K HL W H F T G T X T P A G P ˙ X P B
23 simp21 K HL W H F T G T X T P A F T
24 5 6 ltrncnv K HL W H F T F -1 T
25 12 23 24 syl2anc K HL W H F T G T X T P A F -1 T
26 5 6 ltrnco K HL W H G T F -1 T G F -1 T
27 12 13 25 26 syl3anc K HL W H F T G T X T P A G F -1 T
28 1 5 6 7 trlcl K HL W H G F -1 T R G F -1 B
29 12 27 28 syl2anc K HL W H F T G T X T P A R G F -1 B
30 5 6 ltrnco K HL W H X T F -1 T X F -1 T
31 12 18 25 30 syl3anc K HL W H F T G T X T P A X F -1 T
32 1 5 6 7 trlcl K HL W H X F -1 T R X F -1 B
33 12 31 32 syl2anc K HL W H F T G T X T P A R X F -1 B
34 1 3 latjcl K Lat R G F -1 B R X F -1 B R G F -1 ˙ R X F -1 B
35 11 29 33 34 syl3anc K HL W H F T G T X T P A R G F -1 ˙ R X F -1 B
36 1 8 latmcl K Lat G P ˙ X P B R G F -1 ˙ R X F -1 B G P ˙ X P ˙ R G F -1 ˙ R X F -1 B
37 11 22 35 36 syl3anc K HL W H F T G T X T P A G P ˙ X P ˙ R G F -1 ˙ R X F -1 B
38 9 37 eqeltrid K HL W H F T G T X T P A V B