Metamath Proof Explorer


Theorem cdlemn11a

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11a.b B = Base K
cdlemn11a.l ˙ = K
cdlemn11a.j ˙ = join K
cdlemn11a.a A = Atoms K
cdlemn11a.h H = LHyp K
cdlemn11a.p P = oc K W
cdlemn11a.o O = h T I B
cdlemn11a.t T = LTrn K W
cdlemn11a.r R = trL K W
cdlemn11a.e E = TEndo K W
cdlemn11a.i I = DIsoB K W
cdlemn11a.J J = DIsoC K W
cdlemn11a.u U = DVecH K W
cdlemn11a.d + ˙ = + U
cdlemn11a.s ˙ = LSSum U
cdlemn11a.f F = ι h T | h P = Q
cdlemn11a.g G = ι h T | h P = N
Assertion cdlemn11a K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X G I T J N

Proof

Step Hyp Ref Expression
1 cdlemn11a.b B = Base K
2 cdlemn11a.l ˙ = K
3 cdlemn11a.j ˙ = join K
4 cdlemn11a.a A = Atoms K
5 cdlemn11a.h H = LHyp K
6 cdlemn11a.p P = oc K W
7 cdlemn11a.o O = h T I B
8 cdlemn11a.t T = LTrn K W
9 cdlemn11a.r R = trL K W
10 cdlemn11a.e E = TEndo K W
11 cdlemn11a.i I = DIsoB K W
12 cdlemn11a.J J = DIsoC K W
13 cdlemn11a.u U = DVecH K W
14 cdlemn11a.d + ˙ = + U
15 cdlemn11a.s ˙ = LSSum U
16 cdlemn11a.f F = ι h T | h P = Q
17 cdlemn11a.g G = ι h T | h P = N
18 simp1 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X K HL W H
19 2 4 5 6 lhpocnel2 K HL W H P A ¬ P ˙ W
20 19 3ad2ant1 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X P A ¬ P ˙ W
21 simp22 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X N A ¬ N ˙ W
22 2 4 5 8 17 ltrniotacl K HL W H P A ¬ P ˙ W N A ¬ N ˙ W G T
23 18 20 21 22 syl3anc K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X G T
24 fvresi G T I T G = G
25 23 24 syl K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X I T G = G
26 25 eqcomd K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X G = I T G
27 5 8 10 tendoidcl K HL W H I T E
28 27 3ad2ant1 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X I T E
29 riotaex ι h T | h P = N V
30 17 29 eqeltri G V
31 8 fvexi T V
32 resiexg T V I T V
33 31 32 ax-mp I T V
34 2 4 5 6 8 10 12 17 30 33 dicopelval2 K HL W H N A ¬ N ˙ W G I T J N G = I T G I T E
35 18 21 34 syl2anc K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X G I T J N G = I T G I T E
36 26 28 35 mpbir2and K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X G I T J N