| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemn3.l |  | 
						
							| 2 |  | cdlemn3.a |  | 
						
							| 3 |  | cdlemn3.p |  | 
						
							| 4 |  | cdlemn3.h |  | 
						
							| 5 |  | cdlemn3.t |  | 
						
							| 6 |  | cdlemn3.f |  | 
						
							| 7 |  | cdlemn3.g |  | 
						
							| 8 |  | cdlemn3.j |  | 
						
							| 9 |  | simp1 |  | 
						
							| 10 | 1 2 4 3 | lhpocnel2 |  | 
						
							| 11 | 10 | 3ad2ant1 |  | 
						
							| 12 |  | simp2 |  | 
						
							| 13 | 1 2 4 5 6 | ltrniotacl |  | 
						
							| 14 | 9 11 12 13 | syl3anc |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 4 5 | ltrn1o |  | 
						
							| 17 | 9 14 16 | syl2anc |  | 
						
							| 18 |  | f1of |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 11 | simpld |  | 
						
							| 21 | 15 2 | atbase |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 |  | fvco3 |  | 
						
							| 24 | 19 22 23 | syl2anc |  | 
						
							| 25 | 1 2 4 5 6 | ltrniotaval |  | 
						
							| 26 | 9 11 12 25 | syl3anc |  | 
						
							| 27 | 26 | fveq2d |  | 
						
							| 28 | 1 2 4 5 8 | ltrniotaval |  | 
						
							| 29 | 24 27 28 | 3eqtrd |  | 
						
							| 30 | 1 2 4 5 7 | ltrniotaval |  | 
						
							| 31 | 11 30 | syld3an2 |  | 
						
							| 32 | 29 31 | eqtr4d |  | 
						
							| 33 | 1 2 4 5 8 | ltrniotacl |  | 
						
							| 34 | 4 5 | ltrnco |  | 
						
							| 35 | 9 33 14 34 | syl3anc |  | 
						
							| 36 | 1 2 4 5 7 | ltrniotacl |  | 
						
							| 37 | 11 36 | syld3an2 |  | 
						
							| 38 | 1 2 4 5 | ltrneq3 |  | 
						
							| 39 | 9 35 37 11 38 | syl121anc |  | 
						
							| 40 | 32 39 | mpbid |  |