Metamath Proof Explorer


Theorem cfil3i

Description: A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cfil3i D∞MetXFCauFilDR+xXxballDRF

Proof

Step Hyp Ref Expression
1 cfili FCauFilDR+sFxsysxDy<R
2 1 3adant1 D∞MetXFCauFilDR+sFxsysxDy<R
3 cfilfil D∞MetXFCauFilDFFilX
4 3 3adant3 D∞MetXFCauFilDR+FFilX
5 fileln0 FFilXsFs
6 4 5 sylan D∞MetXFCauFilDR+sFs
7 r19.2z sxsysxDy<RxsysxDy<R
8 7 ex sxsysxDy<RxsysxDy<R
9 6 8 syl D∞MetXFCauFilDR+sFxsysxDy<RxsysxDy<R
10 filelss FFilXsFsX
11 4 10 sylan D∞MetXFCauFilDR+sFsX
12 ssrexv sXxsysxDy<RxXysxDy<R
13 11 12 syl D∞MetXFCauFilDR+sFxsysxDy<RxXysxDy<R
14 dfss3 sxballDRysyxballDR
15 simpl1 D∞MetXFCauFilDR+sFD∞MetX
16 15 ad2antrr D∞MetXFCauFilDR+sFxXysD∞MetX
17 simpll3 D∞MetXFCauFilDR+sFxXR+
18 17 rpxrd D∞MetXFCauFilDR+sFxXR*
19 18 adantr D∞MetXFCauFilDR+sFxXysR*
20 simplr D∞MetXFCauFilDR+sFxXysxX
21 11 adantr D∞MetXFCauFilDR+sFxXsX
22 21 sselda D∞MetXFCauFilDR+sFxXysyX
23 elbl2 D∞MetXR*xXyXyxballDRxDy<R
24 16 19 20 22 23 syl22anc D∞MetXFCauFilDR+sFxXysyxballDRxDy<R
25 24 ralbidva D∞MetXFCauFilDR+sFxXysyxballDRysxDy<R
26 14 25 bitrid D∞MetXFCauFilDR+sFxXsxballDRysxDy<R
27 4 ad2antrr D∞MetXFCauFilDR+sFxXFFilX
28 simplr D∞MetXFCauFilDR+sFxXsF
29 15 adantr D∞MetXFCauFilDR+sFxXD∞MetX
30 simpr D∞MetXFCauFilDR+sFxXxX
31 blssm D∞MetXxXR*xballDRX
32 29 30 18 31 syl3anc D∞MetXFCauFilDR+sFxXxballDRX
33 filss FFilXsFxballDRXsxballDRxballDRF
34 33 3exp2 FFilXsFxballDRXsxballDRxballDRF
35 27 28 32 34 syl3c D∞MetXFCauFilDR+sFxXsxballDRxballDRF
36 26 35 sylbird D∞MetXFCauFilDR+sFxXysxDy<RxballDRF
37 36 reximdva D∞MetXFCauFilDR+sFxXysxDy<RxXxballDRF
38 9 13 37 3syld D∞MetXFCauFilDR+sFxsysxDy<RxXxballDRF
39 38 rexlimdva D∞MetXFCauFilDR+sFxsysxDy<RxXxballDRF
40 2 39 mpd D∞MetXFCauFilDR+xXxballDRF