Metamath Proof Explorer


Theorem chirredlem1

Description: Lemma for chirredi . (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis chirred.1 A C
Assertion chirredlem1 p HAtoms q C q A r HAtoms r A r p q p r = 0

Proof

Step Hyp Ref Expression
1 chirred.1 A C
2 atelch r HAtoms r C
3 chsscon3 r C A C r A A r
4 1 3 mpan2 r C r A A r
5 4 biimpa r C r A A r
6 2 5 sylan r HAtoms r A A r
7 sstr2 q A A r q r
8 6 7 syl5 q A r HAtoms r A q r
9 atelch p HAtoms p C
10 atne0 r HAtoms r 0
11 10 neneqd r HAtoms ¬ r = 0
12 11 ad3antrrr r HAtoms q r p C q C r p q ¬ r = 0
13 simplr r HAtoms q r p C q C r p q p r r p q
14 choccl r C r C
15 2 14 syl r HAtoms r C
16 chlej1 p C r C q C p r p q r q
17 16 3exp1 p C r C q C p r p q r q
18 15 17 syl5com r HAtoms p C q C p r p q r q
19 18 imp42 r HAtoms p C q C p r p q r q
20 19 adantllr r HAtoms q r p C q C p r p q r q
21 20 adantlr r HAtoms q r p C q C r p q p r p q r q
22 13 21 sstrd r HAtoms q r p C q C r p q p r r r q
23 chlejb2 q C r C q r r q = r
24 23 ancoms r C q C q r r q = r
25 24 biimpa r C q C q r r q = r
26 15 25 sylanl1 r HAtoms q C q r r q = r
27 26 an32s r HAtoms q r q C r q = r
28 27 adantrl r HAtoms q r p C q C r q = r
29 28 ad2antrr r HAtoms q r p C q C r p q p r r q = r
30 22 29 sseqtrd r HAtoms q r p C q C r p q p r r r
31 30 ex r HAtoms q r p C q C r p q p r r r
32 chssoc r C r r r = 0
33 32 biimpd r C r r r = 0
34 2 33 syl r HAtoms r r r = 0
35 34 ad3antrrr r HAtoms q r p C q C r p q r r r = 0
36 31 35 syld r HAtoms q r p C q C r p q p r r = 0
37 12 36 mtod r HAtoms q r p C q C r p q ¬ p r
38 37 ex r HAtoms q r p C q C r p q ¬ p r
39 9 38 sylanr1 r HAtoms q r p HAtoms q C r p q ¬ p r
40 atnssm0 r C p HAtoms ¬ p r r p = 0
41 incom r p = p r
42 41 eqeq1i r p = 0 p r = 0
43 40 42 bitrdi r C p HAtoms ¬ p r p r = 0
44 15 43 sylan r HAtoms p HAtoms ¬ p r p r = 0
45 44 ad2ant2r r HAtoms q r p HAtoms q C ¬ p r p r = 0
46 39 45 sylibd r HAtoms q r p HAtoms q C r p q p r = 0
47 46 exp43 r HAtoms q r p HAtoms q C r p q p r = 0
48 47 adantr r HAtoms r A q r p HAtoms q C r p q p r = 0
49 8 48 sylcom q A r HAtoms r A p HAtoms q C r p q p r = 0
50 49 com4t p HAtoms q C q A r HAtoms r A r p q p r = 0
51 50 impd p HAtoms q C q A r HAtoms r A r p q p r = 0
52 51 imp43 p HAtoms q C q A r HAtoms r A r p q p r = 0