| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chirred.1 |
|
| 2 |
|
atelch |
|
| 3 |
|
chsscon3 |
|
| 4 |
1 3
|
mpan2 |
|
| 5 |
4
|
biimpa |
|
| 6 |
2 5
|
sylan |
|
| 7 |
|
sstr2 |
|
| 8 |
6 7
|
syl5 |
|
| 9 |
|
atelch |
|
| 10 |
|
atne0 |
|
| 11 |
10
|
neneqd |
|
| 12 |
11
|
ad3antrrr |
|
| 13 |
|
simplr |
|
| 14 |
|
choccl |
|
| 15 |
2 14
|
syl |
|
| 16 |
|
chlej1 |
|
| 17 |
16
|
3exp1 |
|
| 18 |
15 17
|
syl5com |
|
| 19 |
18
|
imp42 |
|
| 20 |
19
|
adantllr |
|
| 21 |
20
|
adantlr |
|
| 22 |
13 21
|
sstrd |
|
| 23 |
|
chlejb2 |
|
| 24 |
23
|
ancoms |
|
| 25 |
24
|
biimpa |
|
| 26 |
15 25
|
sylanl1 |
|
| 27 |
26
|
an32s |
|
| 28 |
27
|
adantrl |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
22 29
|
sseqtrd |
|
| 31 |
30
|
ex |
|
| 32 |
|
chssoc |
|
| 33 |
32
|
biimpd |
|
| 34 |
2 33
|
syl |
|
| 35 |
34
|
ad3antrrr |
|
| 36 |
31 35
|
syld |
|
| 37 |
12 36
|
mtod |
|
| 38 |
37
|
ex |
|
| 39 |
9 38
|
sylanr1 |
|
| 40 |
|
atnssm0 |
|
| 41 |
|
incom |
|
| 42 |
41
|
eqeq1i |
|
| 43 |
40 42
|
bitrdi |
|
| 44 |
15 43
|
sylan |
|
| 45 |
44
|
ad2ant2r |
|
| 46 |
39 45
|
sylibd |
|
| 47 |
46
|
exp43 |
|
| 48 |
47
|
adantr |
|
| 49 |
8 48
|
sylcom |
|
| 50 |
49
|
com4t |
|
| 51 |
50
|
impd |
|
| 52 |
51
|
imp43 |
|