Metamath Proof Explorer


Theorem chirredlem1

Description: Lemma for chirredi . (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis chirred.1 AC
Assertion chirredlem1 pHAtomsqCqArHAtomsrArpqpr=0

Proof

Step Hyp Ref Expression
1 chirred.1 AC
2 atelch rHAtomsrC
3 chsscon3 rCACrAAr
4 1 3 mpan2 rCrAAr
5 4 biimpa rCrAAr
6 2 5 sylan rHAtomsrAAr
7 sstr2 qAArqr
8 6 7 syl5 qArHAtomsrAqr
9 atelch pHAtomspC
10 atne0 rHAtomsr0
11 10 neneqd rHAtoms¬r=0
12 11 ad3antrrr rHAtomsqrpCqCrpq¬r=0
13 simplr rHAtomsqrpCqCrpqprrpq
14 choccl rCrC
15 2 14 syl rHAtomsrC
16 chlej1 pCrCqCprpqrq
17 16 3exp1 pCrCqCprpqrq
18 15 17 syl5com rHAtomspCqCprpqrq
19 18 imp42 rHAtomspCqCprpqrq
20 19 adantllr rHAtomsqrpCqCprpqrq
21 20 adantlr rHAtomsqrpCqCrpqprpqrq
22 13 21 sstrd rHAtomsqrpCqCrpqprrrq
23 chlejb2 qCrCqrrq=r
24 23 ancoms rCqCqrrq=r
25 24 biimpa rCqCqrrq=r
26 15 25 sylanl1 rHAtomsqCqrrq=r
27 26 an32s rHAtomsqrqCrq=r
28 27 adantrl rHAtomsqrpCqCrq=r
29 28 ad2antrr rHAtomsqrpCqCrpqprrq=r
30 22 29 sseqtrd rHAtomsqrpCqCrpqprrr
31 30 ex rHAtomsqrpCqCrpqprrr
32 chssoc rCrrr=0
33 32 biimpd rCrrr=0
34 2 33 syl rHAtomsrrr=0
35 34 ad3antrrr rHAtomsqrpCqCrpqrrr=0
36 31 35 syld rHAtomsqrpCqCrpqprr=0
37 12 36 mtod rHAtomsqrpCqCrpq¬pr
38 37 ex rHAtomsqrpCqCrpq¬pr
39 9 38 sylanr1 rHAtomsqrpHAtomsqCrpq¬pr
40 atnssm0 rCpHAtoms¬prrp=0
41 incom rp=pr
42 41 eqeq1i rp=0pr=0
43 40 42 bitrdi rCpHAtoms¬prpr=0
44 15 43 sylan rHAtomspHAtoms¬prpr=0
45 44 ad2ant2r rHAtomsqrpHAtomsqC¬prpr=0
46 39 45 sylibd rHAtomsqrpHAtomsqCrpqpr=0
47 46 exp43 rHAtomsqrpHAtomsqCrpqpr=0
48 47 adantr rHAtomsrAqrpHAtomsqCrpqpr=0
49 8 48 sylcom qArHAtomsrApHAtomsqCrpqpr=0
50 49 com4t pHAtomsqCqArHAtomsrArpqpr=0
51 50 impd pHAtomsqCqArHAtomsrArpqpr=0
52 51 imp43 pHAtomsqCqArHAtomsrArpqpr=0