| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chirred.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | atelch | ⊢ ( 𝑟  ∈  HAtoms  →  𝑟  ∈   Cℋ  ) | 
						
							| 3 |  | chsscon3 | ⊢ ( ( 𝑟  ∈   Cℋ   ∧  𝐴  ∈   Cℋ  )  →  ( 𝑟  ⊆  𝐴  ↔  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 4 | 1 3 | mpan2 | ⊢ ( 𝑟  ∈   Cℋ   →  ( 𝑟  ⊆  𝐴  ↔  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 5 | 4 | biimpa | ⊢ ( ( 𝑟  ∈   Cℋ   ∧  𝑟  ⊆  𝐴 )  →  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 6 | 2 5 | sylan | ⊢ ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  𝐴 )  →  ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 7 |  | sstr2 | ⊢ ( 𝑞  ⊆  ( ⊥ ‘ 𝐴 )  →  ( ( ⊥ ‘ 𝐴 )  ⊆  ( ⊥ ‘ 𝑟 )  →  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 8 | 6 7 | syl5 | ⊢ ( 𝑞  ⊆  ( ⊥ ‘ 𝐴 )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  𝐴 )  →  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 9 |  | atelch | ⊢ ( 𝑝  ∈  HAtoms  →  𝑝  ∈   Cℋ  ) | 
						
							| 10 |  | atne0 | ⊢ ( 𝑟  ∈  HAtoms  →  𝑟  ≠  0ℋ ) | 
						
							| 11 | 10 | neneqd | ⊢ ( 𝑟  ∈  HAtoms  →  ¬  𝑟  =  0ℋ ) | 
						
							| 12 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ¬  𝑟  =  0ℋ ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  ∧  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) )  →  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) | 
						
							| 14 |  | choccl | ⊢ ( 𝑟  ∈   Cℋ   →  ( ⊥ ‘ 𝑟 )  ∈   Cℋ  ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝑟  ∈  HAtoms  →  ( ⊥ ‘ 𝑟 )  ∈   Cℋ  ) | 
						
							| 16 |  | chlej1 | ⊢ ( ( ( 𝑝  ∈   Cℋ   ∧  ( ⊥ ‘ 𝑟 )  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  )  ∧  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) )  →  ( 𝑝  ∨ℋ  𝑞 )  ⊆  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 ) ) | 
						
							| 17 | 16 | 3exp1 | ⊢ ( 𝑝  ∈   Cℋ   →  ( ( ⊥ ‘ 𝑟 )  ∈   Cℋ   →  ( 𝑞  ∈   Cℋ   →  ( 𝑝  ⊆  ( ⊥ ‘ 𝑟 )  →  ( 𝑝  ∨ℋ  𝑞 )  ⊆  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 ) ) ) ) ) | 
						
							| 18 | 15 17 | syl5com | ⊢ ( 𝑟  ∈  HAtoms  →  ( 𝑝  ∈   Cℋ   →  ( 𝑞  ∈   Cℋ   →  ( 𝑝  ⊆  ( ⊥ ‘ 𝑟 )  →  ( 𝑝  ∨ℋ  𝑞 )  ⊆  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 ) ) ) ) ) | 
						
							| 19 | 18 | imp42 | ⊢ ( ( ( 𝑟  ∈  HAtoms  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) )  →  ( 𝑝  ∨ℋ  𝑞 )  ⊆  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 ) ) | 
						
							| 20 | 19 | adantllr | ⊢ ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) )  →  ( 𝑝  ∨ℋ  𝑞 )  ⊆  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 ) ) | 
						
							| 21 | 20 | adantlr | ⊢ ( ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  ∧  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) )  →  ( 𝑝  ∨ℋ  𝑞 )  ⊆  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 ) ) | 
						
							| 22 | 13 21 | sstrd | ⊢ ( ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  ∧  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) )  →  𝑟  ⊆  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 ) ) | 
						
							| 23 |  | chlejb2 | ⊢ ( ( 𝑞  ∈   Cℋ   ∧  ( ⊥ ‘ 𝑟 )  ∈   Cℋ  )  →  ( 𝑞  ⊆  ( ⊥ ‘ 𝑟 )  ↔  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 )  =  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 24 | 23 | ancoms | ⊢ ( ( ( ⊥ ‘ 𝑟 )  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  )  →  ( 𝑞  ⊆  ( ⊥ ‘ 𝑟 )  ↔  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 )  =  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 25 | 24 | biimpa | ⊢ ( ( ( ( ⊥ ‘ 𝑟 )  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  )  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  →  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 )  =  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 26 | 15 25 | sylanl1 | ⊢ ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ∈   Cℋ  )  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  →  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 )  =  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 27 | 26 | an32s | ⊢ ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  𝑞  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 )  =  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 28 | 27 | adantrl | ⊢ ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  →  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 )  =  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  ∧  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) )  →  ( ( ⊥ ‘ 𝑟 )  ∨ℋ  𝑞 )  =  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 30 | 22 29 | sseqtrd | ⊢ ( ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  ∧  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) )  →  𝑟  ⊆  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ( 𝑝  ⊆  ( ⊥ ‘ 𝑟 )  →  𝑟  ⊆  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 32 |  | chssoc | ⊢ ( 𝑟  ∈   Cℋ   →  ( 𝑟  ⊆  ( ⊥ ‘ 𝑟 )  ↔  𝑟  =  0ℋ ) ) | 
						
							| 33 | 32 | biimpd | ⊢ ( 𝑟  ∈   Cℋ   →  ( 𝑟  ⊆  ( ⊥ ‘ 𝑟 )  →  𝑟  =  0ℋ ) ) | 
						
							| 34 | 2 33 | syl | ⊢ ( 𝑟  ∈  HAtoms  →  ( 𝑟  ⊆  ( ⊥ ‘ 𝑟 )  →  𝑟  =  0ℋ ) ) | 
						
							| 35 | 34 | ad3antrrr | ⊢ ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ( 𝑟  ⊆  ( ⊥ ‘ 𝑟 )  →  𝑟  =  0ℋ ) ) | 
						
							| 36 | 31 35 | syld | ⊢ ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ( 𝑝  ⊆  ( ⊥ ‘ 𝑟 )  →  𝑟  =  0ℋ ) ) | 
						
							| 37 | 12 36 | mtod | ⊢ ( ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) )  →  ¬  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 38 | 37 | ex | ⊢ ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈   Cℋ   ∧  𝑞  ∈   Cℋ  ) )  →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ¬  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 39 | 9 38 | sylanr1 | ⊢ ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑞  ∈   Cℋ  ) )  →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ¬  𝑝  ⊆  ( ⊥ ‘ 𝑟 ) ) ) | 
						
							| 40 |  | atnssm0 | ⊢ ( ( ( ⊥ ‘ 𝑟 )  ∈   Cℋ   ∧  𝑝  ∈  HAtoms )  →  ( ¬  𝑝  ⊆  ( ⊥ ‘ 𝑟 )  ↔  ( ( ⊥ ‘ 𝑟 )  ∩  𝑝 )  =  0ℋ ) ) | 
						
							| 41 |  | incom | ⊢ ( ( ⊥ ‘ 𝑟 )  ∩  𝑝 )  =  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) ) | 
						
							| 42 | 41 | eqeq1i | ⊢ ( ( ( ⊥ ‘ 𝑟 )  ∩  𝑝 )  =  0ℋ  ↔  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) | 
						
							| 43 | 40 42 | bitrdi | ⊢ ( ( ( ⊥ ‘ 𝑟 )  ∈   Cℋ   ∧  𝑝  ∈  HAtoms )  →  ( ¬  𝑝  ⊆  ( ⊥ ‘ 𝑟 )  ↔  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) | 
						
							| 44 | 15 43 | sylan | ⊢ ( ( 𝑟  ∈  HAtoms  ∧  𝑝  ∈  HAtoms )  →  ( ¬  𝑝  ⊆  ( ⊥ ‘ 𝑟 )  ↔  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) | 
						
							| 45 | 44 | ad2ant2r | ⊢ ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑞  ∈   Cℋ  ) )  →  ( ¬  𝑝  ⊆  ( ⊥ ‘ 𝑟 )  ↔  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) | 
						
							| 46 | 39 45 | sylibd | ⊢ ( ( ( 𝑟  ∈  HAtoms  ∧  𝑞  ⊆  ( ⊥ ‘ 𝑟 ) )  ∧  ( 𝑝  ∈  HAtoms  ∧  𝑞  ∈   Cℋ  ) )  →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) | 
						
							| 47 | 46 | exp43 | ⊢ ( 𝑟  ∈  HAtoms  →  ( 𝑞  ⊆  ( ⊥ ‘ 𝑟 )  →  ( 𝑝  ∈  HAtoms  →  ( 𝑞  ∈   Cℋ   →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) ) ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  𝐴 )  →  ( 𝑞  ⊆  ( ⊥ ‘ 𝑟 )  →  ( 𝑝  ∈  HAtoms  →  ( 𝑞  ∈   Cℋ   →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) ) ) ) | 
						
							| 49 | 8 48 | sylcom | ⊢ ( 𝑞  ⊆  ( ⊥ ‘ 𝐴 )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  𝐴 )  →  ( 𝑝  ∈  HAtoms  →  ( 𝑞  ∈   Cℋ   →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) ) ) ) | 
						
							| 50 | 49 | com4t | ⊢ ( 𝑝  ∈  HAtoms  →  ( 𝑞  ∈   Cℋ   →  ( 𝑞  ⊆  ( ⊥ ‘ 𝐴 )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  𝐴 )  →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) ) ) ) | 
						
							| 51 | 50 | impd | ⊢ ( 𝑝  ∈  HAtoms  →  ( ( 𝑞  ∈   Cℋ   ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) )  →  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  𝐴 )  →  ( 𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 )  →  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) ) ) ) | 
						
							| 52 | 51 | imp43 | ⊢ ( ( ( 𝑝  ∈  HAtoms  ∧  ( 𝑞  ∈   Cℋ   ∧  𝑞  ⊆  ( ⊥ ‘ 𝐴 ) ) )  ∧  ( ( 𝑟  ∈  HAtoms  ∧  𝑟  ⊆  𝐴 )  ∧  𝑟  ⊆  ( 𝑝  ∨ℋ  𝑞 ) ) )  →  ( 𝑝  ∩  ( ⊥ ‘ 𝑟 ) )  =  0ℋ ) |