Step |
Hyp |
Ref |
Expression |
1 |
|
chirred.1 |
|- A e. CH |
2 |
|
atelch |
|- ( r e. HAtoms -> r e. CH ) |
3 |
|
chsscon3 |
|- ( ( r e. CH /\ A e. CH ) -> ( r C_ A <-> ( _|_ ` A ) C_ ( _|_ ` r ) ) ) |
4 |
1 3
|
mpan2 |
|- ( r e. CH -> ( r C_ A <-> ( _|_ ` A ) C_ ( _|_ ` r ) ) ) |
5 |
4
|
biimpa |
|- ( ( r e. CH /\ r C_ A ) -> ( _|_ ` A ) C_ ( _|_ ` r ) ) |
6 |
2 5
|
sylan |
|- ( ( r e. HAtoms /\ r C_ A ) -> ( _|_ ` A ) C_ ( _|_ ` r ) ) |
7 |
|
sstr2 |
|- ( q C_ ( _|_ ` A ) -> ( ( _|_ ` A ) C_ ( _|_ ` r ) -> q C_ ( _|_ ` r ) ) ) |
8 |
6 7
|
syl5 |
|- ( q C_ ( _|_ ` A ) -> ( ( r e. HAtoms /\ r C_ A ) -> q C_ ( _|_ ` r ) ) ) |
9 |
|
atelch |
|- ( p e. HAtoms -> p e. CH ) |
10 |
|
atne0 |
|- ( r e. HAtoms -> r =/= 0H ) |
11 |
10
|
neneqd |
|- ( r e. HAtoms -> -. r = 0H ) |
12 |
11
|
ad3antrrr |
|- ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> -. r = 0H ) |
13 |
|
simplr |
|- ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> r C_ ( p vH q ) ) |
14 |
|
choccl |
|- ( r e. CH -> ( _|_ ` r ) e. CH ) |
15 |
2 14
|
syl |
|- ( r e. HAtoms -> ( _|_ ` r ) e. CH ) |
16 |
|
chlej1 |
|- ( ( ( p e. CH /\ ( _|_ ` r ) e. CH /\ q e. CH ) /\ p C_ ( _|_ ` r ) ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) |
17 |
16
|
3exp1 |
|- ( p e. CH -> ( ( _|_ ` r ) e. CH -> ( q e. CH -> ( p C_ ( _|_ ` r ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) ) ) ) |
18 |
15 17
|
syl5com |
|- ( r e. HAtoms -> ( p e. CH -> ( q e. CH -> ( p C_ ( _|_ ` r ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) ) ) ) |
19 |
18
|
imp42 |
|- ( ( ( r e. HAtoms /\ ( p e. CH /\ q e. CH ) ) /\ p C_ ( _|_ ` r ) ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) |
20 |
19
|
adantllr |
|- ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ p C_ ( _|_ ` r ) ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) |
21 |
20
|
adantlr |
|- ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) |
22 |
13 21
|
sstrd |
|- ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> r C_ ( ( _|_ ` r ) vH q ) ) |
23 |
|
chlejb2 |
|- ( ( q e. CH /\ ( _|_ ` r ) e. CH ) -> ( q C_ ( _|_ ` r ) <-> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) ) |
24 |
23
|
ancoms |
|- ( ( ( _|_ ` r ) e. CH /\ q e. CH ) -> ( q C_ ( _|_ ` r ) <-> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) ) |
25 |
24
|
biimpa |
|- ( ( ( ( _|_ ` r ) e. CH /\ q e. CH ) /\ q C_ ( _|_ ` r ) ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) |
26 |
15 25
|
sylanl1 |
|- ( ( ( r e. HAtoms /\ q e. CH ) /\ q C_ ( _|_ ` r ) ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) |
27 |
26
|
an32s |
|- ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ q e. CH ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) |
28 |
27
|
adantrl |
|- ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) |
29 |
28
|
ad2antrr |
|- ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) |
30 |
22 29
|
sseqtrd |
|- ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> r C_ ( _|_ ` r ) ) |
31 |
30
|
ex |
|- ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> ( p C_ ( _|_ ` r ) -> r C_ ( _|_ ` r ) ) ) |
32 |
|
chssoc |
|- ( r e. CH -> ( r C_ ( _|_ ` r ) <-> r = 0H ) ) |
33 |
32
|
biimpd |
|- ( r e. CH -> ( r C_ ( _|_ ` r ) -> r = 0H ) ) |
34 |
2 33
|
syl |
|- ( r e. HAtoms -> ( r C_ ( _|_ ` r ) -> r = 0H ) ) |
35 |
34
|
ad3antrrr |
|- ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> ( r C_ ( _|_ ` r ) -> r = 0H ) ) |
36 |
31 35
|
syld |
|- ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> ( p C_ ( _|_ ` r ) -> r = 0H ) ) |
37 |
12 36
|
mtod |
|- ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> -. p C_ ( _|_ ` r ) ) |
38 |
37
|
ex |
|- ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) -> ( r C_ ( p vH q ) -> -. p C_ ( _|_ ` r ) ) ) |
39 |
9 38
|
sylanr1 |
|- ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. HAtoms /\ q e. CH ) ) -> ( r C_ ( p vH q ) -> -. p C_ ( _|_ ` r ) ) ) |
40 |
|
atnssm0 |
|- ( ( ( _|_ ` r ) e. CH /\ p e. HAtoms ) -> ( -. p C_ ( _|_ ` r ) <-> ( ( _|_ ` r ) i^i p ) = 0H ) ) |
41 |
|
incom |
|- ( ( _|_ ` r ) i^i p ) = ( p i^i ( _|_ ` r ) ) |
42 |
41
|
eqeq1i |
|- ( ( ( _|_ ` r ) i^i p ) = 0H <-> ( p i^i ( _|_ ` r ) ) = 0H ) |
43 |
40 42
|
bitrdi |
|- ( ( ( _|_ ` r ) e. CH /\ p e. HAtoms ) -> ( -. p C_ ( _|_ ` r ) <-> ( p i^i ( _|_ ` r ) ) = 0H ) ) |
44 |
15 43
|
sylan |
|- ( ( r e. HAtoms /\ p e. HAtoms ) -> ( -. p C_ ( _|_ ` r ) <-> ( p i^i ( _|_ ` r ) ) = 0H ) ) |
45 |
44
|
ad2ant2r |
|- ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. HAtoms /\ q e. CH ) ) -> ( -. p C_ ( _|_ ` r ) <-> ( p i^i ( _|_ ` r ) ) = 0H ) ) |
46 |
39 45
|
sylibd |
|- ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. HAtoms /\ q e. CH ) ) -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) |
47 |
46
|
exp43 |
|- ( r e. HAtoms -> ( q C_ ( _|_ ` r ) -> ( p e. HAtoms -> ( q e. CH -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) ) |
48 |
47
|
adantr |
|- ( ( r e. HAtoms /\ r C_ A ) -> ( q C_ ( _|_ ` r ) -> ( p e. HAtoms -> ( q e. CH -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) ) |
49 |
8 48
|
sylcom |
|- ( q C_ ( _|_ ` A ) -> ( ( r e. HAtoms /\ r C_ A ) -> ( p e. HAtoms -> ( q e. CH -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) ) |
50 |
49
|
com4t |
|- ( p e. HAtoms -> ( q e. CH -> ( q C_ ( _|_ ` A ) -> ( ( r e. HAtoms /\ r C_ A ) -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) ) |
51 |
50
|
impd |
|- ( p e. HAtoms -> ( ( q e. CH /\ q C_ ( _|_ ` A ) ) -> ( ( r e. HAtoms /\ r C_ A ) -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) |
52 |
51
|
imp43 |
|- ( ( ( p e. HAtoms /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( p i^i ( _|_ ` r ) ) = 0H ) |