| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chirred.1 |  |-  A e. CH | 
						
							| 2 |  | atelch |  |-  ( r e. HAtoms -> r e. CH ) | 
						
							| 3 |  | chsscon3 |  |-  ( ( r e. CH /\ A e. CH ) -> ( r C_ A <-> ( _|_ ` A ) C_ ( _|_ ` r ) ) ) | 
						
							| 4 | 1 3 | mpan2 |  |-  ( r e. CH -> ( r C_ A <-> ( _|_ ` A ) C_ ( _|_ ` r ) ) ) | 
						
							| 5 | 4 | biimpa |  |-  ( ( r e. CH /\ r C_ A ) -> ( _|_ ` A ) C_ ( _|_ ` r ) ) | 
						
							| 6 | 2 5 | sylan |  |-  ( ( r e. HAtoms /\ r C_ A ) -> ( _|_ ` A ) C_ ( _|_ ` r ) ) | 
						
							| 7 |  | sstr2 |  |-  ( q C_ ( _|_ ` A ) -> ( ( _|_ ` A ) C_ ( _|_ ` r ) -> q C_ ( _|_ ` r ) ) ) | 
						
							| 8 | 6 7 | syl5 |  |-  ( q C_ ( _|_ ` A ) -> ( ( r e. HAtoms /\ r C_ A ) -> q C_ ( _|_ ` r ) ) ) | 
						
							| 9 |  | atelch |  |-  ( p e. HAtoms -> p e. CH ) | 
						
							| 10 |  | atne0 |  |-  ( r e. HAtoms -> r =/= 0H ) | 
						
							| 11 | 10 | neneqd |  |-  ( r e. HAtoms -> -. r = 0H ) | 
						
							| 12 | 11 | ad3antrrr |  |-  ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> -. r = 0H ) | 
						
							| 13 |  | simplr |  |-  ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> r C_ ( p vH q ) ) | 
						
							| 14 |  | choccl |  |-  ( r e. CH -> ( _|_ ` r ) e. CH ) | 
						
							| 15 | 2 14 | syl |  |-  ( r e. HAtoms -> ( _|_ ` r ) e. CH ) | 
						
							| 16 |  | chlej1 |  |-  ( ( ( p e. CH /\ ( _|_ ` r ) e. CH /\ q e. CH ) /\ p C_ ( _|_ ` r ) ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) | 
						
							| 17 | 16 | 3exp1 |  |-  ( p e. CH -> ( ( _|_ ` r ) e. CH -> ( q e. CH -> ( p C_ ( _|_ ` r ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) ) ) ) | 
						
							| 18 | 15 17 | syl5com |  |-  ( r e. HAtoms -> ( p e. CH -> ( q e. CH -> ( p C_ ( _|_ ` r ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) ) ) ) | 
						
							| 19 | 18 | imp42 |  |-  ( ( ( r e. HAtoms /\ ( p e. CH /\ q e. CH ) ) /\ p C_ ( _|_ ` r ) ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) | 
						
							| 20 | 19 | adantllr |  |-  ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ p C_ ( _|_ ` r ) ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) | 
						
							| 21 | 20 | adantlr |  |-  ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> ( p vH q ) C_ ( ( _|_ ` r ) vH q ) ) | 
						
							| 22 | 13 21 | sstrd |  |-  ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> r C_ ( ( _|_ ` r ) vH q ) ) | 
						
							| 23 |  | chlejb2 |  |-  ( ( q e. CH /\ ( _|_ ` r ) e. CH ) -> ( q C_ ( _|_ ` r ) <-> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) ) | 
						
							| 24 | 23 | ancoms |  |-  ( ( ( _|_ ` r ) e. CH /\ q e. CH ) -> ( q C_ ( _|_ ` r ) <-> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) ) | 
						
							| 25 | 24 | biimpa |  |-  ( ( ( ( _|_ ` r ) e. CH /\ q e. CH ) /\ q C_ ( _|_ ` r ) ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) | 
						
							| 26 | 15 25 | sylanl1 |  |-  ( ( ( r e. HAtoms /\ q e. CH ) /\ q C_ ( _|_ ` r ) ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) | 
						
							| 27 | 26 | an32s |  |-  ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ q e. CH ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) | 
						
							| 28 | 27 | adantrl |  |-  ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> ( ( _|_ ` r ) vH q ) = ( _|_ ` r ) ) | 
						
							| 30 | 22 29 | sseqtrd |  |-  ( ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) /\ p C_ ( _|_ ` r ) ) -> r C_ ( _|_ ` r ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> ( p C_ ( _|_ ` r ) -> r C_ ( _|_ ` r ) ) ) | 
						
							| 32 |  | chssoc |  |-  ( r e. CH -> ( r C_ ( _|_ ` r ) <-> r = 0H ) ) | 
						
							| 33 | 32 | biimpd |  |-  ( r e. CH -> ( r C_ ( _|_ ` r ) -> r = 0H ) ) | 
						
							| 34 | 2 33 | syl |  |-  ( r e. HAtoms -> ( r C_ ( _|_ ` r ) -> r = 0H ) ) | 
						
							| 35 | 34 | ad3antrrr |  |-  ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> ( r C_ ( _|_ ` r ) -> r = 0H ) ) | 
						
							| 36 | 31 35 | syld |  |-  ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> ( p C_ ( _|_ ` r ) -> r = 0H ) ) | 
						
							| 37 | 12 36 | mtod |  |-  ( ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) /\ r C_ ( p vH q ) ) -> -. p C_ ( _|_ ` r ) ) | 
						
							| 38 | 37 | ex |  |-  ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. CH /\ q e. CH ) ) -> ( r C_ ( p vH q ) -> -. p C_ ( _|_ ` r ) ) ) | 
						
							| 39 | 9 38 | sylanr1 |  |-  ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. HAtoms /\ q e. CH ) ) -> ( r C_ ( p vH q ) -> -. p C_ ( _|_ ` r ) ) ) | 
						
							| 40 |  | atnssm0 |  |-  ( ( ( _|_ ` r ) e. CH /\ p e. HAtoms ) -> ( -. p C_ ( _|_ ` r ) <-> ( ( _|_ ` r ) i^i p ) = 0H ) ) | 
						
							| 41 |  | incom |  |-  ( ( _|_ ` r ) i^i p ) = ( p i^i ( _|_ ` r ) ) | 
						
							| 42 | 41 | eqeq1i |  |-  ( ( ( _|_ ` r ) i^i p ) = 0H <-> ( p i^i ( _|_ ` r ) ) = 0H ) | 
						
							| 43 | 40 42 | bitrdi |  |-  ( ( ( _|_ ` r ) e. CH /\ p e. HAtoms ) -> ( -. p C_ ( _|_ ` r ) <-> ( p i^i ( _|_ ` r ) ) = 0H ) ) | 
						
							| 44 | 15 43 | sylan |  |-  ( ( r e. HAtoms /\ p e. HAtoms ) -> ( -. p C_ ( _|_ ` r ) <-> ( p i^i ( _|_ ` r ) ) = 0H ) ) | 
						
							| 45 | 44 | ad2ant2r |  |-  ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. HAtoms /\ q e. CH ) ) -> ( -. p C_ ( _|_ ` r ) <-> ( p i^i ( _|_ ` r ) ) = 0H ) ) | 
						
							| 46 | 39 45 | sylibd |  |-  ( ( ( r e. HAtoms /\ q C_ ( _|_ ` r ) ) /\ ( p e. HAtoms /\ q e. CH ) ) -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) | 
						
							| 47 | 46 | exp43 |  |-  ( r e. HAtoms -> ( q C_ ( _|_ ` r ) -> ( p e. HAtoms -> ( q e. CH -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( r e. HAtoms /\ r C_ A ) -> ( q C_ ( _|_ ` r ) -> ( p e. HAtoms -> ( q e. CH -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) ) | 
						
							| 49 | 8 48 | sylcom |  |-  ( q C_ ( _|_ ` A ) -> ( ( r e. HAtoms /\ r C_ A ) -> ( p e. HAtoms -> ( q e. CH -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) ) | 
						
							| 50 | 49 | com4t |  |-  ( p e. HAtoms -> ( q e. CH -> ( q C_ ( _|_ ` A ) -> ( ( r e. HAtoms /\ r C_ A ) -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) ) | 
						
							| 51 | 50 | impd |  |-  ( p e. HAtoms -> ( ( q e. CH /\ q C_ ( _|_ ` A ) ) -> ( ( r e. HAtoms /\ r C_ A ) -> ( r C_ ( p vH q ) -> ( p i^i ( _|_ ` r ) ) = 0H ) ) ) ) | 
						
							| 52 | 51 | imp43 |  |-  ( ( ( p e. HAtoms /\ ( q e. CH /\ q C_ ( _|_ ` A ) ) ) /\ ( ( r e. HAtoms /\ r C_ A ) /\ r C_ ( p vH q ) ) ) -> ( p i^i ( _|_ ` r ) ) = 0H ) |