| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnpof1.1 |
|
| 2 |
|
chnpof1.2 |
|
| 3 |
|
chnf |
|
| 4 |
2 3
|
syl |
|
| 5 |
1
|
adantr |
|
| 6 |
5
|
adantr |
|
| 7 |
2
|
adantr |
|
| 8 |
7 3
|
syl |
|
| 9 |
|
simpr |
|
| 10 |
|
ffvelcdm |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
11
|
adantrr |
|
| 13 |
4
|
adantr |
|
| 14 |
|
simpr |
|
| 15 |
14
|
adantl |
|
| 16 |
|
ffvelcdm |
|
| 17 |
13 15 16
|
syl2anc |
|
| 18 |
12 17
|
jca |
|
| 19 |
18
|
adantr |
|
| 20 |
2
|
adantr |
|
| 21 |
20
|
adantr |
|
| 22 |
15
|
adantr |
|
| 23 |
|
simplrl |
|
| 24 |
|
elfzonn0 |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
elfzoelz |
|
| 27 |
22 26
|
syl |
|
| 28 |
|
simpr |
|
| 29 |
25 27 28
|
3jca |
|
| 30 |
|
elfzo0z |
|
| 31 |
29 30
|
sylibr |
|
| 32 |
6 21 22 31
|
chnlt |
|
| 33 |
|
po2ne |
|
| 34 |
6 19 32 33
|
syl3anc |
|
| 35 |
34
|
neneqd |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
con2d |
|
| 38 |
37
|
imp |
|
| 39 |
5
|
adantr |
|
| 40 |
17 12
|
jca |
|
| 41 |
40
|
adantr |
|
| 42 |
20
|
adantr |
|
| 43 |
|
simplrl |
|
| 44 |
|
simplrr |
|
| 45 |
|
elfzonn0 |
|
| 46 |
44 45
|
syl |
|
| 47 |
|
elfzoelz |
|
| 48 |
43 47
|
syl |
|
| 49 |
|
simpr |
|
| 50 |
46 48 49
|
3jca |
|
| 51 |
|
elfzo0z |
|
| 52 |
50 51
|
sylibr |
|
| 53 |
39 42 43 52
|
chnlt |
|
| 54 |
|
po2ne |
|
| 55 |
54
|
necomd |
|
| 56 |
39 41 53 55
|
syl3anc |
|
| 57 |
56
|
neneqd |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
con2d |
|
| 60 |
59
|
imp |
|
| 61 |
47
|
zred |
|
| 62 |
26
|
zred |
|
| 63 |
61 62
|
anim12i |
|
| 64 |
63
|
adantl |
|
| 65 |
64
|
adantr |
|
| 66 |
|
lttri4 |
|
| 67 |
65 66
|
syl |
|
| 68 |
|
3orcoma |
|
| 69 |
67 68
|
sylib |
|
| 70 |
38 60 69
|
ecase23d |
|
| 71 |
70
|
ex |
|
| 72 |
71
|
ralrimivva |
|
| 73 |
4 72
|
jca |
|
| 74 |
|
dff13 |
|
| 75 |
73 74
|
sylibr |
|