Metamath Proof Explorer


Theorem chordthmlem

Description: If M is the midpoint of AB and AQ = BQ, then QMB is a right angle. The proof uses ssscongptld to observe that, since AMQ and BMQ have equal sides, the angles QMB and QMA must be equal. Since they are supplementary, both must be right angles. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses chordthmlem.angdef F=x0,y0logyx
chordthmlem.A φA
chordthmlem.B φB
chordthmlem.Q φQ
chordthmlem.M φM=A+B2
chordthmlem.ABequidistQ φAQ=BQ
chordthmlem.AneB φAB
chordthmlem.QneM φQM
Assertion chordthmlem φQMFBMπ2π2

Proof

Step Hyp Ref Expression
1 chordthmlem.angdef F=x0,y0logyx
2 chordthmlem.A φA
3 chordthmlem.B φB
4 chordthmlem.Q φQ
5 chordthmlem.M φM=A+B2
6 chordthmlem.ABequidistQ φAQ=BQ
7 chordthmlem.AneB φAB
8 chordthmlem.QneM φQM
9 negpitopissre ππ
10 2 3 addcld φA+B
11 10 halfcld φA+B2
12 5 11 eqeltrd φM
13 4 12 subcld φQM
14 4 12 8 subne0d φQM0
15 3 12 subcld φBM
16 5 oveq1d φ M2=A+B22
17 12 times2d φ M2=M+M
18 2cnd φ2
19 2ne0 20
20 19 a1i φ20
21 10 18 20 divcan1d φA+B22=A+B
22 16 17 21 3eqtr3d φM+M=A+B
23 2 3 3 7 addneintr2d φA+BB+B
24 22 23 eqnetrd φM+MB+B
25 24 neneqd φ¬M+M=B+B
26 oveq12 M=BM=BM+M=B+B
27 26 anidms M=BM+M=B+B
28 25 27 nsyl φ¬M=B
29 28 neqned φMB
30 29 necomd φBM
31 3 12 30 subne0d φBM0
32 1 13 14 15 31 angcld φQMFBMππ
33 9 32 sselid φQMFBM
34 33 recnd φQMFBM
35 34 coscld φcosQMFBM
36 3 12 negsubdi2d φBM=MB
37 12 12 2 3 addsubeq4d φM+M=A+BAM=MB
38 22 37 mpbid φAM=MB
39 36 38 eqtr4d φBM=AM
40 39 oveq2d φQMFBM=QMFAM
41 40 fveq2d φcosQMFBM=cosQMFAM
42 1 13 14 15 31 cosangneg2d φcosQMFBM=cosQMFBM
43 2 2 3 7 addneintrd φA+AA+B
44 43 22 neeqtrrd φA+AM+M
45 44 necomd φM+MA+A
46 45 neneqd φ¬M+M=A+A
47 oveq12 M=AM=AM+M=A+A
48 47 anidms M=AM+M=A+A
49 46 48 nsyl φ¬M=A
50 49 neqned φMA
51 eqidd φQM=QM
52 2 12 subcld φAM
53 52 absnegd φAM=AM
54 2 12 negsubdi2d φAM=MA
55 54 fveq2d φAM=MA
56 38 fveq2d φAM=MB
57 53 55 56 3eqtr3d φMA=MB
58 1 4 12 2 4 12 3 8 50 8 29 51 57 6 ssscongptld φcosQMFAM=cosQMFBM
59 41 42 58 3eqtr3rd φcosQMFBM=cosQMFBM
60 35 59 eqnegad φcosQMFBM=0
61 coseq0negpitopi QMFBMππcosQMFBM=0QMFBMπ2π2
62 32 61 syl φcosQMFBM=0QMFBMπ2π2
63 60 62 mpbid φQMFBMπ2π2