Description: If M is the midpoint of AB and AQ = BQ, then QMB is a right angle. The proof uses ssscongptld to observe that, since AMQ and BMQ have equal sides, the angles QMB and QMA must be equal. Since they are supplementary, both must be right angles. (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chordthmlem.angdef | |
|
chordthmlem.A | |
||
chordthmlem.B | |
||
chordthmlem.Q | |
||
chordthmlem.M | |
||
chordthmlem.ABequidistQ | |
||
chordthmlem.AneB | |
||
chordthmlem.QneM | |
||
Assertion | chordthmlem | |