Metamath Proof Explorer


Theorem clim2div

Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017)

Ref Expression
Hypotheses clim2div.1 Z=M
clim2div.2 φNZ
clim2div.3 φkZFk
clim2div.4 φseqM×FA
clim2div.5 φseqM×FN0
Assertion clim2div φseqN+1×FAseqM×FN

Proof

Step Hyp Ref Expression
1 clim2div.1 Z=M
2 clim2div.2 φNZ
3 clim2div.3 φkZFk
4 clim2div.4 φseqM×FA
5 clim2div.5 φseqM×FN0
6 eqid N+1=N+1
7 eluzelz NMN
8 7 1 eleq2s NZN
9 2 8 syl φN
10 9 peano2zd φN+1
11 eluzel2 NMM
12 11 1 eleq2s NZM
13 2 12 syl φM
14 1 13 3 prodf φseqM×F:Z
15 14 2 ffvelcdmd φseqM×FN
16 15 5 reccld φ1seqM×FN
17 seqex seqN+1×FV
18 17 a1i φseqN+1×FV
19 2 1 eleqtrdi φNM
20 peano2uz NMN+1M
21 19 20 syl φN+1M
22 21 1 eleqtrrdi φN+1Z
23 1 uztrn2 N+1ZjN+1jZ
24 22 23 sylan φjN+1jZ
25 14 ffvelcdmda φjZseqM×Fj
26 24 25 syldan φjN+1seqM×Fj
27 mulcl kxkx
28 27 adantl φjN+1kxkx
29 mulass kxykxy=kxy
30 29 adantl φjN+1kxykxy=kxy
31 simpr φjN+1jN+1
32 19 adantr φjN+1NM
33 elfzuz kMjkM
34 33 1 eleqtrrdi kMjkZ
35 34 3 sylan2 φkMjFk
36 35 adantlr φjN+1kMjFk
37 28 30 31 32 36 seqsplit φjN+1seqM×Fj=seqM×FNseqN+1×Fj
38 37 eqcomd φjN+1seqM×FNseqN+1×Fj=seqM×Fj
39 15 adantr φjN+1seqM×FN
40 1 uztrn2 N+1ZkN+1kZ
41 22 40 sylan φkN+1kZ
42 41 3 syldan φkN+1Fk
43 6 10 42 prodf φseqN+1×F:N+1
44 43 ffvelcdmda φjN+1seqN+1×Fj
45 5 adantr φjN+1seqM×FN0
46 26 39 44 45 divmuld φjN+1seqM×FjseqM×FN=seqN+1×FjseqM×FNseqN+1×Fj=seqM×Fj
47 38 46 mpbird φjN+1seqM×FjseqM×FN=seqN+1×Fj
48 26 39 45 divrec2d φjN+1seqM×FjseqM×FN=1seqM×FNseqM×Fj
49 47 48 eqtr3d φjN+1seqN+1×Fj=1seqM×FNseqM×Fj
50 6 10 4 16 18 26 49 climmulc2 φseqN+1×F1seqM×FNA
51 climcl seqM×FAA
52 4 51 syl φA
53 52 15 5 divrec2d φAseqM×FN=1seqM×FNA
54 50 53 breqtrrd φseqN+1×FAseqM×FN