Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clim2div.1 | |
|
clim2div.2 | |
||
clim2div.3 | |
||
clim2div.4 | |
||
clim2div.5 | |
||
Assertion | clim2div | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2div.1 | |
|
2 | clim2div.2 | |
|
3 | clim2div.3 | |
|
4 | clim2div.4 | |
|
5 | clim2div.5 | |
|
6 | eqid | |
|
7 | eluzelz | |
|
8 | 7 1 | eleq2s | |
9 | 2 8 | syl | |
10 | 9 | peano2zd | |
11 | eluzel2 | |
|
12 | 11 1 | eleq2s | |
13 | 2 12 | syl | |
14 | 1 13 3 | prodf | |
15 | 14 2 | ffvelcdmd | |
16 | 15 5 | reccld | |
17 | seqex | |
|
18 | 17 | a1i | |
19 | 2 1 | eleqtrdi | |
20 | peano2uz | |
|
21 | 19 20 | syl | |
22 | 21 1 | eleqtrrdi | |
23 | 1 | uztrn2 | |
24 | 22 23 | sylan | |
25 | 14 | ffvelcdmda | |
26 | 24 25 | syldan | |
27 | mulcl | |
|
28 | 27 | adantl | |
29 | mulass | |
|
30 | 29 | adantl | |
31 | simpr | |
|
32 | 19 | adantr | |
33 | elfzuz | |
|
34 | 33 1 | eleqtrrdi | |
35 | 34 3 | sylan2 | |
36 | 35 | adantlr | |
37 | 28 30 31 32 36 | seqsplit | |
38 | 37 | eqcomd | |
39 | 15 | adantr | |
40 | 1 | uztrn2 | |
41 | 22 40 | sylan | |
42 | 41 3 | syldan | |
43 | 6 10 42 | prodf | |
44 | 43 | ffvelcdmda | |
45 | 5 | adantr | |
46 | 26 39 44 45 | divmuld | |
47 | 38 46 | mpbird | |
48 | 26 39 45 | divrec2d | |
49 | 47 48 | eqtr3d | |
50 | 6 10 4 16 18 26 49 | climmulc2 | |
51 | climcl | |
|
52 | 4 51 | syl | |
53 | 52 15 5 | divrec2d | |
54 | 50 53 | breqtrrd | |