Metamath Proof Explorer


Theorem climcncf

Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses climcncf.1 Z=M
climcncf.2 φM
climcncf.4 φF:AcnB
climcncf.5 φG:ZA
climcncf.6 φGD
climcncf.7 φDA
Assertion climcncf φFGFD

Proof

Step Hyp Ref Expression
1 climcncf.1 Z=M
2 climcncf.2 φM
3 climcncf.4 φF:AcnB
4 climcncf.5 φG:ZA
5 climcncf.6 φGD
6 climcncf.7 φDA
7 cncff F:AcnBF:AB
8 3 7 syl φF:AB
9 8 ffvelcdmda φzAFzB
10 cncfrss2 F:AcnBB
11 3 10 syl φB
12 11 sselda φFzBFz
13 9 12 syldan φzAFz
14 1 fvexi ZV
15 fex G:ZAZVGV
16 4 14 15 sylancl φGV
17 coexg F:AcnBGVFGV
18 3 16 17 syl2anc φFGV
19 cncfi F:AcnBDAx+y+zAzD<yFzFD<x
20 19 3expia F:AcnBDAx+y+zAzD<yFzFD<x
21 3 6 20 syl2anc φx+y+zAzD<yFzFD<x
22 21 imp φx+y+zAzD<yFzFD<x
23 4 ffvelcdmda φkZGkA
24 fvco3 G:ZAkZFGk=FGk
25 4 24 sylan φkZFGk=FGk
26 1 2 6 13 5 18 22 23 25 climcn1 φFGFD