Metamath Proof Explorer


Theorem climf2

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . Similar to clim , but without the disjoint var constraint ph k and F k . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climf2.1 kφ
climf2.nf _kF
climf2.f φFV
climf2.fv φkFk=B
Assertion climf2 φFAAx+jkjBBA<x

Proof

Step Hyp Ref Expression
1 climf2.1 kφ
2 climf2.nf _kF
3 climf2.f φFV
4 climf2.fv φkFk=B
5 climrel Rel
6 5 brrelex2i FAAV
7 6 a1i φFAAV
8 elex AAV
9 8 adantr Ax+jkjFkFkA<xAV
10 9 a1i φAx+jkjFkFkA<xAV
11 simpr f=Fy=Ay=A
12 11 eleq1d f=Fy=AyA
13 nfv xf=Fy=A
14 2 nfeq2 kf=F
15 nfv ky=A
16 14 15 nfan kf=Fy=A
17 fveq1 f=Ffk=Fk
18 17 adantr f=Fy=Afk=Fk
19 18 eleq1d f=Fy=AfkFk
20 oveq12 fk=Fky=Afky=FkA
21 17 20 sylan f=Fy=Afky=FkA
22 21 fveq2d f=Fy=Afky=FkA
23 22 breq1d f=Fy=Afky<xFkA<x
24 19 23 anbi12d f=Fy=Afkfky<xFkFkA<x
25 16 24 ralbid f=Fy=Akjfkfky<xkjFkFkA<x
26 25 rexbidv f=Fy=Ajkjfkfky<xjkjFkFkA<x
27 13 26 ralbid f=Fy=Ax+jkjfkfky<xx+jkjFkFkA<x
28 12 27 anbi12d f=Fy=Ayx+jkjfkfky<xAx+jkjFkFkA<x
29 df-clim =fy|yx+jkjfkfky<x
30 28 29 brabga FVAVFAAx+jkjFkFkA<x
31 30 ex FVAVFAAx+jkjFkFkA<x
32 3 31 syl φAVFAAx+jkjFkFkA<x
33 7 10 32 pm5.21ndd φFAAx+jkjFkFkA<x
34 eluzelz kjk
35 4 eleq1d φkFkB
36 4 fvoveq1d φkFkA=BA
37 36 breq1d φkFkA<xBA<x
38 35 37 anbi12d φkFkFkA<xBBA<x
39 34 38 sylan2 φkjFkFkA<xBBA<x
40 1 39 ralbida φkjFkFkA<xkjBBA<x
41 40 rexbidv φjkjFkFkA<xjkjBBA<x
42 41 ralbidv φx+jkjFkFkA<xx+jkjBBA<x
43 42 anbi2d φAx+jkjFkFkA<xAx+jkjBBA<x
44 33 43 bitrd φFAAx+jkjBBA<x