Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climfveqf.p | |
|
climfveqf.n | |
||
climfveqf.o | |
||
climfveqf.z | |
||
climfveqf.f | |
||
climfveqf.g | |
||
climfveqf.m | |
||
climfveqf.e | |
||
Assertion | climfveqf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfveqf.p | |
|
2 | climfveqf.n | |
|
3 | climfveqf.o | |
|
4 | climfveqf.z | |
|
5 | climfveqf.f | |
|
6 | climfveqf.g | |
|
7 | climfveqf.m | |
|
8 | climfveqf.e | |
|
9 | climdm | |
|
10 | 9 | biimpi | |
11 | 10 | adantl | |
12 | 11 9 | sylibr | |
13 | nfcv | |
|
14 | 13 | nfel1 | |
15 | 1 14 | nfan | |
16 | 2 13 | nffv | |
17 | 3 13 | nffv | |
18 | 16 17 | nfeq | |
19 | 15 18 | nfim | |
20 | eleq1w | |
|
21 | 20 | anbi2d | |
22 | fveq2 | |
|
23 | fveq2 | |
|
24 | 22 23 | eqeq12d | |
25 | 21 24 | imbi12d | |
26 | 19 25 8 | chvarfv | |
27 | 4 5 6 7 26 | climeldmeq | |
28 | 27 | adantr | |
29 | 12 28 | mpbid | |
30 | climdm | |
|
31 | 29 30 | sylib | |
32 | 6 | adantr | |
33 | 5 | adantr | |
34 | 7 | adantr | |
35 | 26 | eqcomd | |
36 | 35 | adantlr | |
37 | 4 32 33 34 36 | climeq | |
38 | 31 37 | mpbid | |
39 | climuni | |
|
40 | 11 38 39 | syl2anc | |
41 | ndmfv | |
|
42 | 41 | adantl | |
43 | simpr | |
|
44 | 27 | adantr | |
45 | 43 44 | mtbid | |
46 | ndmfv | |
|
47 | 45 46 | syl | |
48 | 42 47 | eqtr4d | |
49 | 40 48 | pm2.61dan | |