Metamath Proof Explorer


Theorem climfveqf

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climfveqf.p kφ
climfveqf.n _kF
climfveqf.o _kG
climfveqf.z Z=M
climfveqf.f φFV
climfveqf.g φGW
climfveqf.m φM
climfveqf.e φkZFk=Gk
Assertion climfveqf φF=G

Proof

Step Hyp Ref Expression
1 climfveqf.p kφ
2 climfveqf.n _kF
3 climfveqf.o _kG
4 climfveqf.z Z=M
5 climfveqf.f φFV
6 climfveqf.g φGW
7 climfveqf.m φM
8 climfveqf.e φkZFk=Gk
9 climdm FdomFF
10 9 biimpi FdomFF
11 10 adantl φFdomFF
12 11 9 sylibr φFdomFdom
13 nfcv _kj
14 13 nfel1 kjZ
15 1 14 nfan kφjZ
16 2 13 nffv _kFj
17 3 13 nffv _kGj
18 16 17 nfeq kFj=Gj
19 15 18 nfim kφjZFj=Gj
20 eleq1w k=jkZjZ
21 20 anbi2d k=jφkZφjZ
22 fveq2 k=jFk=Fj
23 fveq2 k=jGk=Gj
24 22 23 eqeq12d k=jFk=GkFj=Gj
25 21 24 imbi12d k=jφkZFk=GkφjZFj=Gj
26 19 25 8 chvarfv φjZFj=Gj
27 4 5 6 7 26 climeldmeq φFdomGdom
28 27 adantr φFdomFdomGdom
29 12 28 mpbid φFdomGdom
30 climdm GdomGG
31 29 30 sylib φFdomGG
32 6 adantr φFdomGW
33 5 adantr φFdomFV
34 7 adantr φFdomM
35 26 eqcomd φjZGj=Fj
36 35 adantlr φFdomjZGj=Fj
37 4 32 33 34 36 climeq φFdomGGFG
38 31 37 mpbid φFdomFG
39 climuni FFFGF=G
40 11 38 39 syl2anc φFdomF=G
41 ndmfv ¬FdomF=
42 41 adantl φ¬FdomF=
43 simpr φ¬Fdom¬Fdom
44 27 adantr φ¬FdomFdomGdom
45 43 44 mtbid φ¬Fdom¬Gdom
46 ndmfv ¬GdomG=
47 45 46 syl φ¬FdomG=
48 42 47 eqtr4d φ¬FdomF=G
49 40 48 pm2.61dan φF=G