Metamath Proof Explorer


Theorem climinf2lem

Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf2lem.1 Z=M
climinf2lem.2 φM
climinf2lem.3 φF:Z
climinf2lem.4 φkZFk+1Fk
climinf2lem.5 φxkZxFk
Assertion climinf2lem φFsupranF*<

Proof

Step Hyp Ref Expression
1 climinf2lem.1 Z=M
2 climinf2lem.2 φM
3 climinf2lem.3 φF:Z
4 climinf2lem.4 φkZFk+1Fk
5 climinf2lem.5 φxkZxFk
6 1 2 3 4 5 climinf φFsupranF<
7 3 frnd φranF
8 3 ffnd φFFnZ
9 2 1 uzidd2 φMZ
10 fnfvelrn FFnZMZFMranF
11 8 9 10 syl2anc φFMranF
12 11 ne0d φranF
13 simpr φyranFyranF
14 fvelrnb FFnZyranFkZFk=y
15 8 14 syl φyranFkZFk=y
16 15 adantr φyranFyranFkZFk=y
17 13 16 mpbid φyranFkZFk=y
18 17 adantlr φkZxFkyranFkZFk=y
19 nfv kφ
20 nfra1 kkZxFk
21 19 20 nfan kφkZxFk
22 nfv kxy
23 rspa kZxFkkZxFk
24 simpl xFkFk=yxFk
25 simpr xFkFk=yFk=y
26 24 25 breqtrd xFkFk=yxy
27 26 ex xFkFk=yxy
28 23 27 syl kZxFkkZFk=yxy
29 28 ex kZxFkkZFk=yxy
30 29 adantl φkZxFkkZFk=yxy
31 21 22 30 rexlimd φkZxFkkZFk=yxy
32 31 adantr φkZxFkyranFkZFk=yxy
33 18 32 mpd φkZxFkyranFxy
34 33 ralrimiva φkZxFkyranFxy
35 34 adantlr φxkZxFkyranFxy
36 35 ex φxkZxFkyranFxy
37 36 reximdva φxkZxFkxyranFxy
38 5 37 mpd φxyranFxy
39 infxrre ranFranFxyranFxysupranF*<=supranF<
40 7 12 38 39 syl3anc φsupranF*<=supranF<
41 6 40 breqtrrd φFsupranF*<