Description: A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz ). (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climliminflimsup2.1 | |
|
climliminflimsup2.2 | |
||
climliminflimsup2.3 | |
||
Assertion | climliminflimsup2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climliminflimsup2.1 | |
|
2 | climliminflimsup2.2 | |
|
3 | climliminflimsup2.3 | |
|
4 | 1 2 3 | climliminflimsup | |
5 | 1 | adantr | |
6 | 3 | adantr | |
7 | simprl | |
|
8 | simprr | |
|
9 | 5 2 6 7 8 | liminflimsupclim | |
10 | 1 | adantr | |
11 | 3 | adantr | |
12 | simpr | |
|
13 | 10 2 11 12 | climliminflimsupd | |
14 | 13 | eqcomd | |
15 | 9 14 | syldan | |
16 | 15 7 | eqeltrd | |
17 | 16 8 | jca | |
18 | simpr | |
|
19 | 1 | adantr | |
20 | 3 | frexr | |
21 | 20 | adantr | |
22 | 19 2 21 | liminfgelimsupuz | |
23 | 18 22 | mpbid | |
24 | 23 | adantrl | |
25 | simprl | |
|
26 | 24 25 | eqeltrd | |
27 | simprr | |
|
28 | 26 27 | jca | |
29 | 17 28 | impbida | |
30 | 4 29 | bitrd | |