Metamath Proof Explorer


Theorem climliminflimsup2

Description: A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz ). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsup2.1 φM
climliminflimsup2.2 Z=M
climliminflimsup2.3 φF:Z
Assertion climliminflimsup2 φFdomlim supFlim supFlim infF

Proof

Step Hyp Ref Expression
1 climliminflimsup2.1 φM
2 climliminflimsup2.2 Z=M
3 climliminflimsup2.3 φF:Z
4 1 2 3 climliminflimsup φFdomlim infFlim supFlim infF
5 1 adantr φlim infFlim supFlim infFM
6 3 adantr φlim infFlim supFlim infFF:Z
7 simprl φlim infFlim supFlim infFlim infF
8 simprr φlim infFlim supFlim infFlim supFlim infF
9 5 2 6 7 8 liminflimsupclim φlim infFlim supFlim infFFdom
10 1 adantr φFdomM
11 3 adantr φFdomF:Z
12 simpr φFdomFdom
13 10 2 11 12 climliminflimsupd φFdomlim infF=lim supF
14 13 eqcomd φFdomlim supF=lim infF
15 9 14 syldan φlim infFlim supFlim infFlim supF=lim infF
16 15 7 eqeltrd φlim infFlim supFlim infFlim supF
17 16 8 jca φlim infFlim supFlim infFlim supFlim supFlim infF
18 simpr φlim supFlim infFlim supFlim infF
19 1 adantr φlim supFlim infFM
20 3 frexr φF:Z*
21 20 adantr φlim supFlim infFF:Z*
22 19 2 21 liminfgelimsupuz φlim supFlim infFlim supFlim infFlim infF=lim supF
23 18 22 mpbid φlim supFlim infFlim infF=lim supF
24 23 adantrl φlim supFlim supFlim infFlim infF=lim supF
25 simprl φlim supFlim supFlim infFlim supF
26 24 25 eqeltrd φlim supFlim supFlim infFlim infF
27 simprr φlim supFlim supFlim infFlim supFlim infF
28 26 27 jca φlim supFlim supFlim infFlim infFlim supFlim infF
29 17 28 impbida φlim infFlim supFlim infFlim supFlim supFlim infF
30 4 29 bitrd φFdomlim supFlim supFlim infF