Metamath Proof Explorer


Theorem climrescn

Description: A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climrescn.m φM
climrescn.z Z=M
climrescn.f φFFnZ
climrescn.c φFdom
Assertion climrescn φjZFj:j

Proof

Step Hyp Ref Expression
1 climrescn.m φM
2 climrescn.z Z=M
3 climrescn.f φFFnZ
4 climrescn.c φFdom
5 nfv kφiZ
6 nfra1 kkiFkFkF<1
7 5 6 nfan kφiZkiFkFkF<1
8 2 uztrn2 iZkikZ
9 8 adantll φiZkikZ
10 3 fndmd φdomF=Z
11 10 ad2antrr φiZkidomF=Z
12 9 11 eleqtrrd φiZkikdomF
13 12 adantlr φiZkiFkFkF<1kikdomF
14 rspa kiFkFkF<1kiFkFkF<1
15 14 adantll iZkiFkFkF<1kiFkFkF<1
16 15 simpld iZkiFkFkF<1kiFk
17 16 adantlll φiZkiFkFkF<1kiFk
18 13 17 jca φiZkiFkFkF<1kikdomFFk
19 7 18 ralrimia φiZkiFkFkF<1kikdomFFk
20 fnfun FFnZFunF
21 ffvresb FunFFi:ikikdomFFk
22 3 20 21 3syl φFi:ikikdomFFk
23 22 ad2antrr φiZkiFkFkF<1Fi:ikikdomFFk
24 19 23 mpbird φiZkiFkFkF<1Fi:i
25 breq2 x=1FkF<xFkF<1
26 25 anbi2d x=1FkFkF<xFkFkF<1
27 26 rexralbidv x=1ikiFkFkF<xikiFkFkF<1
28 climdm FdomFF
29 4 28 sylib φFF
30 eqidd φkFk=Fk
31 4 30 clim φFFFx+ikiFkFkF<x
32 29 31 mpbid φFx+ikiFkFkF<x
33 32 simprd φx+ikiFkFkF<x
34 1rp 1+
35 34 a1i φ1+
36 27 33 35 rspcdva φikiFkFkF<1
37 2 rexuz3 MiZkiFkFkF<1ikiFkFkF<1
38 1 37 syl φiZkiFkFkF<1ikiFkFkF<1
39 36 38 mpbird φiZkiFkFkF<1
40 24 39 reximddv3 φiZFi:i
41 fveq2 j=ij=i
42 41 reseq2d j=iFj=Fi
43 42 41 feq12d j=iFj:jFi:i
44 43 cbvrexvw jZFj:jiZFi:i
45 40 44 sylibr φjZFj:j