Description: A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climrescn.m | |
|
climrescn.z | |
||
climrescn.f | |
||
climrescn.c | |
||
Assertion | climrescn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrescn.m | |
|
2 | climrescn.z | |
|
3 | climrescn.f | |
|
4 | climrescn.c | |
|
5 | nfv | |
|
6 | nfra1 | |
|
7 | 5 6 | nfan | |
8 | 2 | uztrn2 | |
9 | 8 | adantll | |
10 | 3 | fndmd | |
11 | 10 | ad2antrr | |
12 | 9 11 | eleqtrrd | |
13 | 12 | adantlr | |
14 | rspa | |
|
15 | 14 | adantll | |
16 | 15 | simpld | |
17 | 16 | adantlll | |
18 | 13 17 | jca | |
19 | 7 18 | ralrimia | |
20 | fnfun | |
|
21 | ffvresb | |
|
22 | 3 20 21 | 3syl | |
23 | 22 | ad2antrr | |
24 | 19 23 | mpbird | |
25 | breq2 | |
|
26 | 25 | anbi2d | |
27 | 26 | rexralbidv | |
28 | climdm | |
|
29 | 4 28 | sylib | |
30 | eqidd | |
|
31 | 4 30 | clim | |
32 | 29 31 | mpbid | |
33 | 32 | simprd | |
34 | 1rp | |
|
35 | 34 | a1i | |
36 | 27 33 35 | rspcdva | |
37 | 2 | rexuz3 | |
38 | 1 37 | syl | |
39 | 36 38 | mpbird | |
40 | 24 39 | reximddv3 | |
41 | fveq2 | |
|
42 | 41 | reseq2d | |
43 | 42 41 | feq12d | |
44 | 43 | cbvrexvw | |
45 | 40 44 | sylibr | |