Metamath Proof Explorer


Theorem climshftlem

Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis climshft.1 FV
Assertion climshftlem MFAFshiftMA

Proof

Step Hyp Ref Expression
1 climshft.1 FV
2 zaddcl kMk+M
3 2 ancoms Mkk+M
4 eluzsub kMnk+MnMk
5 4 3com12 Mknk+MnMk
6 5 3expa Mknk+MnMk
7 fveq2 m=nMFm=FnM
8 7 eleq1d m=nMFmFnM
9 7 fvoveq1d m=nMFmA=FnMA
10 9 breq1d m=nMFmA<xFnMA<x
11 8 10 anbi12d m=nMFmFmA<xFnMFnMA<x
12 11 rspcv nMkmkFmFmA<xFnMFnMA<x
13 6 12 syl Mknk+MmkFmFmA<xFnMFnMA<x
14 zcn MM
15 eluzelcn nk+Mn
16 1 shftval MnFshiftMn=FnM
17 16 eleq1d MnFshiftMnFnM
18 16 fvoveq1d MnFshiftMnA=FnMA
19 18 breq1d MnFshiftMnA<xFnMA<x
20 17 19 anbi12d MnFshiftMnFshiftMnA<xFnMFnMA<x
21 14 15 20 syl2an Mnk+MFshiftMnFshiftMnA<xFnMFnMA<x
22 21 adantlr Mknk+MFshiftMnFshiftMnA<xFnMFnMA<x
23 13 22 sylibrd Mknk+MmkFmFmA<xFshiftMnFshiftMnA<x
24 23 ralrimdva MkmkFmFmA<xnk+MFshiftMnFshiftMnA<x
25 fveq2 m=k+Mm=k+M
26 25 raleqdv m=k+MnmFshiftMnFshiftMnA<xnk+MFshiftMnFshiftMnA<x
27 26 rspcev k+Mnk+MFshiftMnFshiftMnA<xmnmFshiftMnFshiftMnA<x
28 3 24 27 syl6an MkmkFmFmA<xmnmFshiftMnFshiftMnA<x
29 28 rexlimdva MkmkFmFmA<xmnmFshiftMnFshiftMnA<x
30 29 ralimdv Mx+kmkFmFmA<xx+mnmFshiftMnFshiftMnA<x
31 30 anim2d MAx+kmkFmFmA<xAx+mnmFshiftMnFshiftMnA<x
32 1 a1i MFV
33 eqidd MmFm=Fm
34 32 33 clim MFAAx+kmkFmFmA<x
35 ovexd MFshiftMV
36 eqidd MnFshiftMn=FshiftMn
37 35 36 clim MFshiftMAAx+mnmFshiftMnFshiftMnA<x
38 31 34 37 3imtr4d MFAFshiftMA