Metamath Proof Explorer


Theorem clwlkclwwlklem1

Description: Lemma 1 for clwlkclwwlk . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)

Ref Expression
Assertion clwlkclwwlklem1 E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEffWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf

Proof

Step Hyp Ref Expression
1 ovex 0..^P1V
2 mptexg 0..^P1Vx0..^P1ifx<P2E-1PxPx+1E-1PxP0V
3 1 2 mp1i E:domE1-1RPWordV2Px0..^P1ifx<P2E-1PxPx+1E-1PxP0V
4 eqid x0..^P1ifx<P2E-1PxPx+1E-1PxP0=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
5 4 clwlkclwwlklem2a E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1ifx<P2E-1PxPx+1E-1PxP0WorddomEP:0x0..^P1ifx<P2E-1PxPx+1E-1PxP0Vi0..^x0..^P1ifx<P2E-1PxPx+1E-1PxP0Ex0..^P1ifx<P2E-1PxPx+1E-1PxP0i=PiPi+1P0=Px0..^P1ifx<P2E-1PxPx+1E-1PxP0
6 5 adantr E:domE1-1RPWordV2Pf=x0..^P1ifx<P2E-1PxPx+1E-1PxP0lastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1ifx<P2E-1PxPx+1E-1PxP0WorddomEP:0x0..^P1ifx<P2E-1PxPx+1E-1PxP0Vi0..^x0..^P1ifx<P2E-1PxPx+1E-1PxP0Ex0..^P1ifx<P2E-1PxPx+1E-1PxP0i=PiPi+1P0=Px0..^P1ifx<P2E-1PxPx+1E-1PxP0
7 eleq1 f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0fWorddomEx0..^P1ifx<P2E-1PxPx+1E-1PxP0WorddomE
8 fveq2 f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
9 8 oveq2d f=x0..^P1ifx<P2E-1PxPx+1E-1PxP00f=0x0..^P1ifx<P2E-1PxPx+1E-1PxP0
10 9 feq2d f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0P:0fVP:0x0..^P1ifx<P2E-1PxPx+1E-1PxP0V
11 8 oveq2d f=x0..^P1ifx<P2E-1PxPx+1E-1PxP00..^f=0..^x0..^P1ifx<P2E-1PxPx+1E-1PxP0
12 fveq1 f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0fi=x0..^P1ifx<P2E-1PxPx+1E-1PxP0i
13 12 fveqeq2d f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0Efi=PiPi+1Ex0..^P1ifx<P2E-1PxPx+1E-1PxP0i=PiPi+1
14 11 13 raleqbidv f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0i0..^fEfi=PiPi+1i0..^x0..^P1ifx<P2E-1PxPx+1E-1PxP0Ex0..^P1ifx<P2E-1PxPx+1E-1PxP0i=PiPi+1
15 7 10 14 3anbi123d f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0fWorddomEP:0fVi0..^fEfi=PiPi+1x0..^P1ifx<P2E-1PxPx+1E-1PxP0WorddomEP:0x0..^P1ifx<P2E-1PxPx+1E-1PxP0Vi0..^x0..^P1ifx<P2E-1PxPx+1E-1PxP0Ex0..^P1ifx<P2E-1PxPx+1E-1PxP0i=PiPi+1
16 2fveq3 f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0Pf=Px0..^P1ifx<P2E-1PxPx+1E-1PxP0
17 16 eqeq2d f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0P0=PfP0=Px0..^P1ifx<P2E-1PxPx+1E-1PxP0
18 15 17 anbi12d f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0fWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pfx0..^P1ifx<P2E-1PxPx+1E-1PxP0WorddomEP:0x0..^P1ifx<P2E-1PxPx+1E-1PxP0Vi0..^x0..^P1ifx<P2E-1PxPx+1E-1PxP0Ex0..^P1ifx<P2E-1PxPx+1E-1PxP0i=PiPi+1P0=Px0..^P1ifx<P2E-1PxPx+1E-1PxP0
19 18 imbi2d f=x0..^P1ifx<P2E-1PxPx+1E-1PxP0lastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEfWorddomEP:0fVi0..^fEfi=PiPi+1P0=PflastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1ifx<P2E-1PxPx+1E-1PxP0WorddomEP:0x0..^P1ifx<P2E-1PxPx+1E-1PxP0Vi0..^x0..^P1ifx<P2E-1PxPx+1E-1PxP0Ex0..^P1ifx<P2E-1PxPx+1E-1PxP0i=PiPi+1P0=Px0..^P1ifx<P2E-1PxPx+1E-1PxP0
20 19 adantl E:domE1-1RPWordV2Pf=x0..^P1ifx<P2E-1PxPx+1E-1PxP0lastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEfWorddomEP:0fVi0..^fEfi=PiPi+1P0=PflastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1ifx<P2E-1PxPx+1E-1PxP0WorddomEP:0x0..^P1ifx<P2E-1PxPx+1E-1PxP0Vi0..^x0..^P1ifx<P2E-1PxPx+1E-1PxP0Ex0..^P1ifx<P2E-1PxPx+1E-1PxP0i=PiPi+1P0=Px0..^P1ifx<P2E-1PxPx+1E-1PxP0
21 6 20 mpbird E:domE1-1RPWordV2Pf=x0..^P1ifx<P2E-1PxPx+1E-1PxP0lastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEfWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf
22 3 21 spcimedv E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEffWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf