Metamath Proof Explorer


Theorem clwwlkn1loopb

Description: A word represents a closed walk of length 1 iff this word is a singleton word consisting of a vertex with an attached loop. (Contributed by AV, 11-Feb-2022)

Ref Expression
Assertion clwwlkn1loopb W 1 ClWWalksN G v Vtx G W = ⟨“ v ”⟩ v Edg G

Proof

Step Hyp Ref Expression
1 clwwlkn1 W 1 ClWWalksN G W = 1 W Word Vtx G W 0 Edg G
2 wrdl1exs1 W Word Vtx G W = 1 v Vtx G W = ⟨“ v ”⟩
3 fveq1 W = ⟨“ v ”⟩ W 0 = ⟨“ v ”⟩ 0
4 s1fv v Vtx G ⟨“ v ”⟩ 0 = v
5 3 4 sylan9eq W = ⟨“ v ”⟩ v Vtx G W 0 = v
6 5 sneqd W = ⟨“ v ”⟩ v Vtx G W 0 = v
7 6 eleq1d W = ⟨“ v ”⟩ v Vtx G W 0 Edg G v Edg G
8 7 biimpd W = ⟨“ v ”⟩ v Vtx G W 0 Edg G v Edg G
9 8 ex W = ⟨“ v ”⟩ v Vtx G W 0 Edg G v Edg G
10 9 com13 W 0 Edg G v Vtx G W = ⟨“ v ”⟩ v Edg G
11 10 imp W 0 Edg G v Vtx G W = ⟨“ v ”⟩ v Edg G
12 11 ancld W 0 Edg G v Vtx G W = ⟨“ v ”⟩ W = ⟨“ v ”⟩ v Edg G
13 12 reximdva W 0 Edg G v Vtx G W = ⟨“ v ”⟩ v Vtx G W = ⟨“ v ”⟩ v Edg G
14 2 13 syl5com W Word Vtx G W = 1 W 0 Edg G v Vtx G W = ⟨“ v ”⟩ v Edg G
15 14 expcom W = 1 W Word Vtx G W 0 Edg G v Vtx G W = ⟨“ v ”⟩ v Edg G
16 15 3imp W = 1 W Word Vtx G W 0 Edg G v Vtx G W = ⟨“ v ”⟩ v Edg G
17 s1len ⟨“ v ”⟩ = 1
18 17 a1i v Vtx G v Edg G ⟨“ v ”⟩ = 1
19 s1cl v Vtx G ⟨“ v ”⟩ Word Vtx G
20 19 adantr v Vtx G v Edg G ⟨“ v ”⟩ Word Vtx G
21 4 eqcomd v Vtx G v = ⟨“ v ”⟩ 0
22 21 sneqd v Vtx G v = ⟨“ v ”⟩ 0
23 22 eleq1d v Vtx G v Edg G ⟨“ v ”⟩ 0 Edg G
24 23 biimpd v Vtx G v Edg G ⟨“ v ”⟩ 0 Edg G
25 24 imp v Vtx G v Edg G ⟨“ v ”⟩ 0 Edg G
26 18 20 25 3jca v Vtx G v Edg G ⟨“ v ”⟩ = 1 ⟨“ v ”⟩ Word Vtx G ⟨“ v ”⟩ 0 Edg G
27 26 adantrl v Vtx G W = ⟨“ v ”⟩ v Edg G ⟨“ v ”⟩ = 1 ⟨“ v ”⟩ Word Vtx G ⟨“ v ”⟩ 0 Edg G
28 fveqeq2 W = ⟨“ v ”⟩ W = 1 ⟨“ v ”⟩ = 1
29 eleq1 W = ⟨“ v ”⟩ W Word Vtx G ⟨“ v ”⟩ Word Vtx G
30 3 sneqd W = ⟨“ v ”⟩ W 0 = ⟨“ v ”⟩ 0
31 30 eleq1d W = ⟨“ v ”⟩ W 0 Edg G ⟨“ v ”⟩ 0 Edg G
32 28 29 31 3anbi123d W = ⟨“ v ”⟩ W = 1 W Word Vtx G W 0 Edg G ⟨“ v ”⟩ = 1 ⟨“ v ”⟩ Word Vtx G ⟨“ v ”⟩ 0 Edg G
33 32 ad2antrl v Vtx G W = ⟨“ v ”⟩ v Edg G W = 1 W Word Vtx G W 0 Edg G ⟨“ v ”⟩ = 1 ⟨“ v ”⟩ Word Vtx G ⟨“ v ”⟩ 0 Edg G
34 27 33 mpbird v Vtx G W = ⟨“ v ”⟩ v Edg G W = 1 W Word Vtx G W 0 Edg G
35 34 rexlimiva v Vtx G W = ⟨“ v ”⟩ v Edg G W = 1 W Word Vtx G W 0 Edg G
36 16 35 impbii W = 1 W Word Vtx G W 0 Edg G v Vtx G W = ⟨“ v ”⟩ v Edg G
37 1 36 bitri W 1 ClWWalksN G v Vtx G W = ⟨“ v ”⟩ v Edg G