Metamath Proof Explorer


Theorem clwwlkn1loopb

Description: A word represents a closed walk of length 1 iff this word is a singleton word consisting of a vertex with an attached loop. (Contributed by AV, 11-Feb-2022)

Ref Expression
Assertion clwwlkn1loopb W1ClWWalksNGvVtxGW=⟨“v”⟩vEdgG

Proof

Step Hyp Ref Expression
1 clwwlkn1 W1ClWWalksNGW=1WWordVtxGW0EdgG
2 wrdl1exs1 WWordVtxGW=1vVtxGW=⟨“v”⟩
3 fveq1 W=⟨“v”⟩W0=⟨“v”⟩0
4 s1fv vVtxG⟨“v”⟩0=v
5 3 4 sylan9eq W=⟨“v”⟩vVtxGW0=v
6 5 sneqd W=⟨“v”⟩vVtxGW0=v
7 6 eleq1d W=⟨“v”⟩vVtxGW0EdgGvEdgG
8 7 biimpd W=⟨“v”⟩vVtxGW0EdgGvEdgG
9 8 ex W=⟨“v”⟩vVtxGW0EdgGvEdgG
10 9 com13 W0EdgGvVtxGW=⟨“v”⟩vEdgG
11 10 imp W0EdgGvVtxGW=⟨“v”⟩vEdgG
12 11 ancld W0EdgGvVtxGW=⟨“v”⟩W=⟨“v”⟩vEdgG
13 12 reximdva W0EdgGvVtxGW=⟨“v”⟩vVtxGW=⟨“v”⟩vEdgG
14 2 13 syl5com WWordVtxGW=1W0EdgGvVtxGW=⟨“v”⟩vEdgG
15 14 expcom W=1WWordVtxGW0EdgGvVtxGW=⟨“v”⟩vEdgG
16 15 3imp W=1WWordVtxGW0EdgGvVtxGW=⟨“v”⟩vEdgG
17 s1len ⟨“v”⟩=1
18 17 a1i vVtxGvEdgG⟨“v”⟩=1
19 s1cl vVtxG⟨“v”⟩WordVtxG
20 19 adantr vVtxGvEdgG⟨“v”⟩WordVtxG
21 4 eqcomd vVtxGv=⟨“v”⟩0
22 21 sneqd vVtxGv=⟨“v”⟩0
23 22 eleq1d vVtxGvEdgG⟨“v”⟩0EdgG
24 23 biimpd vVtxGvEdgG⟨“v”⟩0EdgG
25 24 imp vVtxGvEdgG⟨“v”⟩0EdgG
26 18 20 25 3jca vVtxGvEdgG⟨“v”⟩=1⟨“v”⟩WordVtxG⟨“v”⟩0EdgG
27 26 adantrl vVtxGW=⟨“v”⟩vEdgG⟨“v”⟩=1⟨“v”⟩WordVtxG⟨“v”⟩0EdgG
28 fveqeq2 W=⟨“v”⟩W=1⟨“v”⟩=1
29 eleq1 W=⟨“v”⟩WWordVtxG⟨“v”⟩WordVtxG
30 3 sneqd W=⟨“v”⟩W0=⟨“v”⟩0
31 30 eleq1d W=⟨“v”⟩W0EdgG⟨“v”⟩0EdgG
32 28 29 31 3anbi123d W=⟨“v”⟩W=1WWordVtxGW0EdgG⟨“v”⟩=1⟨“v”⟩WordVtxG⟨“v”⟩0EdgG
33 32 ad2antrl vVtxGW=⟨“v”⟩vEdgGW=1WWordVtxGW0EdgG⟨“v”⟩=1⟨“v”⟩WordVtxG⟨“v”⟩0EdgG
34 27 33 mpbird vVtxGW=⟨“v”⟩vEdgGW=1WWordVtxGW0EdgG
35 34 rexlimiva vVtxGW=⟨“v”⟩vEdgGW=1WWordVtxGW0EdgG
36 16 35 impbii W=1WWordVtxGW0EdgGvVtxGW=⟨“v”⟩vEdgG
37 1 36 bitri W1ClWWalksNGvVtxGW=⟨“v”⟩vEdgG