Metamath Proof Explorer


Theorem cmmbl

Description: The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion cmmbl AdomvolAdomvol

Proof

Step Hyp Ref Expression
1 difssd AdomvolA
2 elpwi x𝒫x
3 inss1 xAx
4 ovolsscl xAxxvol*xvol*xA
5 3 4 mp3an1 xvol*xvol*xA
6 5 3adant1 Adomvolxvol*xvol*xA
7 6 recnd Adomvolxvol*xvol*xA
8 difss xAx
9 ovolsscl xAxxvol*xvol*xA
10 8 9 mp3an1 xvol*xvol*xA
11 10 3adant1 Adomvolxvol*xvol*xA
12 11 recnd Adomvolxvol*xvol*xA
13 7 12 addcomd Adomvolxvol*xvol*xA+vol*xA=vol*xA+vol*xA
14 mblsplit Adomvolxvol*xvol*x=vol*xA+vol*xA
15 indifcom xA=xA
16 simp2 Adomvolxvol*xx
17 16 ssdifssd Adomvolxvol*xxA
18 sseqin2 xAxA=xA
19 17 18 sylib Adomvolxvol*xxA=xA
20 15 19 eqtr3id Adomvolxvol*xxA=xA
21 20 fveq2d Adomvolxvol*xvol*xA=vol*xA
22 difin xxA=xA
23 20 difeq2d Adomvolxvol*xxxA=xxA
24 22 23 eqtr3id Adomvolxvol*xxA=xxA
25 dfin4 xA=xxA
26 24 25 eqtr4di Adomvolxvol*xxA=xA
27 26 fveq2d Adomvolxvol*xvol*xA=vol*xA
28 21 27 oveq12d Adomvolxvol*xvol*xA+vol*xA=vol*xA+vol*xA
29 13 14 28 3eqtr4d Adomvolxvol*xvol*x=vol*xA+vol*xA
30 29 3expia Adomvolxvol*xvol*x=vol*xA+vol*xA
31 2 30 sylan2 Adomvolx𝒫vol*xvol*x=vol*xA+vol*xA
32 31 ralrimiva Adomvolx𝒫vol*xvol*x=vol*xA+vol*xA
33 ismbl AdomvolAx𝒫vol*xvol*x=vol*xA+vol*xA
34 1 32 33 sylanbrc AdomvolAdomvol