Metamath Proof Explorer


Theorem cmpfiiin

Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypotheses cmpfiiin.x X=J
cmpfiiin.j φJComp
cmpfiiin.s φkISClsdJ
cmpfiiin.z φlIlFinXklS
Assertion cmpfiiin φXkIS

Proof

Step Hyp Ref Expression
1 cmpfiiin.x X=J
2 cmpfiiin.j φJComp
3 cmpfiiin.s φkISClsdJ
4 cmpfiiin.z φlIlFinXklS
5 cmptop JCompJTop
6 2 5 syl φJTop
7 1 topcld JTopXClsdJ
8 6 7 syl φXClsdJ
9 1 cldss SClsdJSX
10 3 9 syl φkISX
11 10 ralrimiva φkISX
12 riinint XClsdJkISXXkIS=XrankIS
13 8 11 12 syl2anc φXkIS=XrankIS
14 8 snssd φXClsdJ
15 3 fmpttd φkIS:IClsdJ
16 15 frnd φrankISClsdJ
17 14 16 unssd φXrankISClsdJ
18 elin l𝒫IFinl𝒫IlFin
19 elpwi l𝒫IlI
20 19 anim1i l𝒫IlFinlIlFin
21 18 20 sylbi l𝒫IFinlIlFin
22 nesym XklS¬=XklS
23 4 22 sylib φlIlFin¬=XklS
24 21 23 sylan2 φl𝒫IFin¬=XklS
25 24 nrexdv φ¬l𝒫IFin=XklS
26 elrfirn2 XClsdJkISXfiXrankISl𝒫IFin=XklS
27 8 11 26 syl2anc φfiXrankISl𝒫IFin=XklS
28 25 27 mtbird φ¬fiXrankIS
29 cmpfii JCompXrankISClsdJ¬fiXrankISXrankIS
30 2 17 28 29 syl3anc φXrankIS
31 13 30 eqnetrd φXkIS