Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cmpfiiin.x | |
|
cmpfiiin.j | |
||
cmpfiiin.s | |
||
cmpfiiin.z | |
||
Assertion | cmpfiiin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmpfiiin.x | |
|
2 | cmpfiiin.j | |
|
3 | cmpfiiin.s | |
|
4 | cmpfiiin.z | |
|
5 | cmptop | |
|
6 | 2 5 | syl | |
7 | 1 | topcld | |
8 | 6 7 | syl | |
9 | 1 | cldss | |
10 | 3 9 | syl | |
11 | 10 | ralrimiva | |
12 | riinint | |
|
13 | 8 11 12 | syl2anc | |
14 | 8 | snssd | |
15 | 3 | fmpttd | |
16 | 15 | frnd | |
17 | 14 16 | unssd | |
18 | elin | |
|
19 | elpwi | |
|
20 | 19 | anim1i | |
21 | 18 20 | sylbi | |
22 | nesym | |
|
23 | 4 22 | sylib | |
24 | 21 23 | sylan2 | |
25 | 24 | nrexdv | |
26 | elrfirn2 | |
|
27 | 8 11 26 | syl2anc | |
28 | 25 27 | mtbird | |
29 | cmpfii | |
|
30 | 2 17 28 29 | syl3anc | |
31 | 13 30 | eqnetrd | |