| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnconn.2 |
|
| 2 |
|
cntop2 |
|
| 3 |
2
|
3ad2ant3 |
|
| 4 |
|
df-ne |
|
| 5 |
|
eqid |
|
| 6 |
|
simpl1 |
|
| 7 |
|
simpl3 |
|
| 8 |
|
simprl |
|
| 9 |
8
|
elin1d |
|
| 10 |
|
cnima |
|
| 11 |
7 9 10
|
syl2anc |
|
| 12 |
|
elssuni |
|
| 13 |
9 12
|
syl |
|
| 14 |
13 1
|
sseqtrrdi |
|
| 15 |
|
simpl2 |
|
| 16 |
|
forn |
|
| 17 |
15 16
|
syl |
|
| 18 |
14 17
|
sseqtrrd |
|
| 19 |
|
df-rn |
|
| 20 |
18 19
|
sseqtrdi |
|
| 21 |
|
sseqin2 |
|
| 22 |
20 21
|
sylib |
|
| 23 |
|
simprr |
|
| 24 |
22 23
|
eqnetrd |
|
| 25 |
|
imadisj |
|
| 26 |
25
|
necon3bii |
|
| 27 |
24 26
|
sylibr |
|
| 28 |
8
|
elin2d |
|
| 29 |
|
cnclima |
|
| 30 |
7 28 29
|
syl2anc |
|
| 31 |
5 6 11 27 30
|
connclo |
|
| 32 |
5 1
|
cnf |
|
| 33 |
|
fdm |
|
| 34 |
7 32 33
|
3syl |
|
| 35 |
|
fof |
|
| 36 |
|
fdm |
|
| 37 |
15 35 36
|
3syl |
|
| 38 |
31 34 37
|
3eqtr2d |
|
| 39 |
38
|
imaeq2d |
|
| 40 |
|
foimacnv |
|
| 41 |
15 14 40
|
syl2anc |
|
| 42 |
|
foima |
|
| 43 |
15 42
|
syl |
|
| 44 |
39 41 43
|
3eqtr3d |
|
| 45 |
44
|
expr |
|
| 46 |
4 45
|
biimtrrid |
|
| 47 |
46
|
orrd |
|
| 48 |
|
vex |
|
| 49 |
48
|
elpr |
|
| 50 |
47 49
|
sylibr |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
ssrdv |
|
| 53 |
1
|
isconn2 |
|
| 54 |
3 52 53
|
sylanbrc |
|