Metamath Proof Explorer


Theorem cndprob01

Description: The conditional probability has values in [ 0 , 1 ] . (Contributed by Thierry Arnoux, 13-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprob01 PProbAdomPBdomPPB0cProbPAB01

Proof

Step Hyp Ref Expression
1 cndprobval PProbAdomPBdomPcProbPAB=PABPB
2 1 adantr PProbAdomPBdomPPB0cProbPAB=PABPB
3 simpl1 PProbAdomPBdomPPB0PProb
4 domprobmeas PProbPmeasuresdomP
5 3 4 syl PProbAdomPBdomPPB0PmeasuresdomP
6 domprobsiga PProbdomPransigAlgebra
7 3 6 syl PProbAdomPBdomPPB0domPransigAlgebra
8 simpl2 PProbAdomPBdomPPB0AdomP
9 simpl3 PProbAdomPBdomPPB0BdomP
10 inelsiga domPransigAlgebraAdomPBdomPABdomP
11 7 8 9 10 syl3anc PProbAdomPBdomPPB0ABdomP
12 inss2 ABB
13 12 a1i PProbAdomPBdomPPB0ABB
14 5 11 9 13 measssd PProbAdomPBdomPPB0PABPB
15 prob01 PProbABdomPPAB01
16 3 11 15 syl2anc PProbAdomPBdomPPB0PAB01
17 prob01 PProbBdomPPB01
18 3 9 17 syl2anc PProbAdomPBdomPPB0PB01
19 simpr PProbAdomPBdomPPB0PB0
20 unitdivcld PAB01PB01PB0PABPBPABPB01
21 16 18 19 20 syl3anc PProbAdomPBdomPPB0PABPBPABPB01
22 14 21 mpbid PProbAdomPBdomPPB0PABPB01
23 2 22 eqeltrd PProbAdomPBdomPPB0cProbPAB01