| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cndprobval |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | simpl1 |  | 
						
							| 4 |  | domprobmeas |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 |  | domprobsiga |  | 
						
							| 7 | 3 6 | syl |  | 
						
							| 8 |  | simpl2 |  | 
						
							| 9 |  | simpl3 |  | 
						
							| 10 |  | inelsiga |  | 
						
							| 11 | 7 8 9 10 | syl3anc |  | 
						
							| 12 |  | inss2 |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 | 5 11 9 13 | measssd |  | 
						
							| 15 |  | prob01 |  | 
						
							| 16 | 3 11 15 | syl2anc |  | 
						
							| 17 |  | prob01 |  | 
						
							| 18 | 3 9 17 | syl2anc |  | 
						
							| 19 |  | simpr |  | 
						
							| 20 |  | unitdivcld |  | 
						
							| 21 | 16 18 19 20 | syl3anc |  | 
						
							| 22 | 14 21 | mpbid |  | 
						
							| 23 | 2 22 | eqeltrd |  |