Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coapm.o | |
|
coapm.a | |
||
Assertion | coapm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coapm.o | |
|
2 | coapm.a | |
|
3 | eqid | |
|
4 | 1 2 3 | coafval | |
5 | 4 | mpofun | |
6 | funfn | |
|
7 | 5 6 | mpbi | |
8 | 1 2 | dmcoass | |
9 | 8 | sseli | |
10 | 1st2nd2 | |
|
11 | 9 10 | syl | |
12 | 11 | fveq2d | |
13 | df-ov | |
|
14 | 12 13 | eqtr4di | |
15 | eqid | |
|
16 | 2 15 | homarw | |
17 | id | |
|
18 | 11 17 | eqeltrrd | |
19 | df-br | |
|
20 | 18 19 | sylibr | |
21 | 1 2 | eldmcoa | |
22 | 20 21 | sylib | |
23 | 22 | simp1d | |
24 | 2 15 | arwhoma | |
25 | 23 24 | syl | |
26 | 22 | simp3d | |
27 | 26 | oveq2d | |
28 | 25 27 | eleqtrd | |
29 | 22 | simp2d | |
30 | 2 15 | arwhoma | |
31 | 29 30 | syl | |
32 | 1 15 28 31 | coahom | |
33 | 16 32 | sselid | |
34 | 14 33 | eqeltrd | |
35 | 34 | rgen | |
36 | ffnfv | |
|
37 | 7 35 36 | mpbir2an | |
38 | 2 | fvexi | |
39 | 38 38 | xpex | |
40 | 38 39 | elpm2 | |
41 | 37 8 40 | mpbir2an | |