Metamath Proof Explorer


Theorem coapm

Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses coapm.o ·˙=compaC
coapm.a A=ArrowC
Assertion coapm ·˙A𝑝𝑚A×A

Proof

Step Hyp Ref Expression
1 coapm.o ·˙=compaC
2 coapm.a A=ArrowC
3 eqid compC=compC
4 1 2 3 coafval ·˙=gA,fhA|codah=domagdomafcodag2ndgdomafdomagcompCcodag2ndf
5 4 mpofun Fun·˙
6 funfn Fun·˙·˙Fndom·˙
7 5 6 mpbi ·˙Fndom·˙
8 1 2 dmcoass dom·˙A×A
9 8 sseli zdom·˙zA×A
10 1st2nd2 zA×Az=1stz2ndz
11 9 10 syl zdom·˙z=1stz2ndz
12 11 fveq2d zdom·˙·˙z=·˙1stz2ndz
13 df-ov 1stz·˙2ndz=·˙1stz2ndz
14 12 13 eqtr4di zdom·˙·˙z=1stz·˙2ndz
15 eqid HomaC=HomaC
16 2 15 homarw doma2ndzHomaCcoda1stzA
17 id zdom·˙zdom·˙
18 11 17 eqeltrrd zdom·˙1stz2ndzdom·˙
19 df-br 1stzdom·˙2ndz1stz2ndzdom·˙
20 18 19 sylibr zdom·˙1stzdom·˙2ndz
21 1 2 eldmcoa 1stzdom·˙2ndz2ndzA1stzAcoda2ndz=doma1stz
22 20 21 sylib zdom·˙2ndzA1stzAcoda2ndz=doma1stz
23 22 simp1d zdom·˙2ndzA
24 2 15 arwhoma 2ndzA2ndzdoma2ndzHomaCcoda2ndz
25 23 24 syl zdom·˙2ndzdoma2ndzHomaCcoda2ndz
26 22 simp3d zdom·˙coda2ndz=doma1stz
27 26 oveq2d zdom·˙doma2ndzHomaCcoda2ndz=doma2ndzHomaCdoma1stz
28 25 27 eleqtrd zdom·˙2ndzdoma2ndzHomaCdoma1stz
29 22 simp2d zdom·˙1stzA
30 2 15 arwhoma 1stzA1stzdoma1stzHomaCcoda1stz
31 29 30 syl zdom·˙1stzdoma1stzHomaCcoda1stz
32 1 15 28 31 coahom zdom·˙1stz·˙2ndzdoma2ndzHomaCcoda1stz
33 16 32 sselid zdom·˙1stz·˙2ndzA
34 14 33 eqeltrd zdom·˙·˙zA
35 34 rgen zdom·˙·˙zA
36 ffnfv ·˙:dom·˙A·˙Fndom·˙zdom·˙·˙zA
37 7 35 36 mpbir2an ·˙:dom·˙A
38 2 fvexi AV
39 38 38 xpex A×AV
40 38 39 elpm2 ·˙A𝑝𝑚A×A·˙:dom·˙Adom·˙A×A
41 37 8 40 mpbir2an ·˙A𝑝𝑚A×A