Description: The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | coefv0.1 | |
|
coeadd.2 | |
||
Assertion | coe11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coefv0.1 | |
|
2 | coeadd.2 | |
|
3 | fveq2 | |
|
4 | 3 1 2 | 3eqtr4g | |
5 | simp3 | |
|
6 | 5 | cnveqd | |
7 | 6 | imaeq1d | |
8 | 7 | supeq1d | |
9 | 1 | dgrval | |
10 | 9 | 3ad2ant1 | |
11 | 2 | dgrval | |
12 | 11 | 3ad2ant2 | |
13 | 8 10 12 | 3eqtr4d | |
14 | 13 | oveq2d | |
15 | simpl3 | |
|
16 | 15 | fveq1d | |
17 | 16 | oveq1d | |
18 | 14 17 | sumeq12dv | |
19 | 18 | mpteq2dv | |
20 | eqid | |
|
21 | 1 20 | coeid | |
22 | 21 | 3ad2ant1 | |
23 | eqid | |
|
24 | 2 23 | coeid | |
25 | 24 | 3ad2ant2 | |
26 | 19 22 25 | 3eqtr4d | |
27 | 26 | 3expia | |
28 | 4 27 | impbid2 | |