Metamath Proof Explorer


Theorem coe11

Description: The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses coefv0.1 A=coeffF
coeadd.2 B=coeffG
Assertion coe11 FPolySGPolySF=GA=B

Proof

Step Hyp Ref Expression
1 coefv0.1 A=coeffF
2 coeadd.2 B=coeffG
3 fveq2 F=GcoeffF=coeffG
4 3 1 2 3eqtr4g F=GA=B
5 simp3 FPolySGPolySA=BA=B
6 5 cnveqd FPolySGPolySA=BA-1=B-1
7 6 imaeq1d FPolySGPolySA=BA-10=B-10
8 7 supeq1d FPolySGPolySA=BsupA-100<=supB-100<
9 1 dgrval FPolySdegF=supA-100<
10 9 3ad2ant1 FPolySGPolySA=BdegF=supA-100<
11 2 dgrval GPolySdegG=supB-100<
12 11 3ad2ant2 FPolySGPolySA=BdegG=supB-100<
13 8 10 12 3eqtr4d FPolySGPolySA=BdegF=degG
14 13 oveq2d FPolySGPolySA=B0degF=0degG
15 simpl3 FPolySGPolySA=Bk0degFA=B
16 15 fveq1d FPolySGPolySA=Bk0degFAk=Bk
17 16 oveq1d FPolySGPolySA=Bk0degFAkzk=Bkzk
18 14 17 sumeq12dv FPolySGPolySA=Bk=0degFAkzk=k=0degGBkzk
19 18 mpteq2dv FPolySGPolySA=Bzk=0degFAkzk=zk=0degGBkzk
20 eqid degF=degF
21 1 20 coeid FPolySF=zk=0degFAkzk
22 21 3ad2ant1 FPolySGPolySA=BF=zk=0degFAkzk
23 eqid degG=degG
24 2 23 coeid GPolySG=zk=0degGBkzk
25 24 3ad2ant2 FPolySGPolySA=BG=zk=0degGBkzk
26 19 22 25 3eqtr4d FPolySGPolySA=BF=G
27 26 3expia FPolySGPolySA=BF=G
28 4 27 impbid2 FPolySGPolySF=GA=B