Metamath Proof Explorer


Theorem coe1fzgsumd

Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019)

Ref Expression
Hypotheses coe1fzgsumd.p P=Poly1R
coe1fzgsumd.b B=BaseP
coe1fzgsumd.r φRRing
coe1fzgsumd.k φK0
coe1fzgsumd.m φxNMB
coe1fzgsumd.n φNFin
Assertion coe1fzgsumd φcoe1PxNMK=RxNcoe1MK

Proof

Step Hyp Ref Expression
1 coe1fzgsumd.p P=Poly1R
2 coe1fzgsumd.b B=BaseP
3 coe1fzgsumd.r φRRing
4 coe1fzgsumd.k φK0
5 coe1fzgsumd.m φxNMB
6 coe1fzgsumd.n φNFin
7 raleq n=xnMBxMB
8 7 anbi2d n=φxnMBφxMB
9 mpteq1 n=xnM=xM
10 9 oveq2d n=PxnM=PxM
11 10 fveq2d n=coe1PxnM=coe1PxM
12 11 fveq1d n=coe1PxnMK=coe1PxMK
13 mpteq1 n=xncoe1MK=xcoe1MK
14 13 oveq2d n=Rxncoe1MK=Rxcoe1MK
15 12 14 eqeq12d n=coe1PxnMK=Rxncoe1MKcoe1PxMK=Rxcoe1MK
16 8 15 imbi12d n=φxnMBcoe1PxnMK=Rxncoe1MKφxMBcoe1PxMK=Rxcoe1MK
17 raleq n=mxnMBxmMB
18 17 anbi2d n=mφxnMBφxmMB
19 mpteq1 n=mxnM=xmM
20 19 oveq2d n=mPxnM=PxmM
21 20 fveq2d n=mcoe1PxnM=coe1PxmM
22 21 fveq1d n=mcoe1PxnMK=coe1PxmMK
23 mpteq1 n=mxncoe1MK=xmcoe1MK
24 23 oveq2d n=mRxncoe1MK=Rxmcoe1MK
25 22 24 eqeq12d n=mcoe1PxnMK=Rxncoe1MKcoe1PxmMK=Rxmcoe1MK
26 18 25 imbi12d n=mφxnMBcoe1PxnMK=Rxncoe1MKφxmMBcoe1PxmMK=Rxmcoe1MK
27 raleq n=maxnMBxmaMB
28 27 anbi2d n=maφxnMBφxmaMB
29 mpteq1 n=maxnM=xmaM
30 29 oveq2d n=maPxnM=PxmaM
31 30 fveq2d n=macoe1PxnM=coe1PxmaM
32 31 fveq1d n=macoe1PxnMK=coe1PxmaMK
33 mpteq1 n=maxncoe1MK=xmacoe1MK
34 33 oveq2d n=maRxncoe1MK=Rxmacoe1MK
35 32 34 eqeq12d n=macoe1PxnMK=Rxncoe1MKcoe1PxmaMK=Rxmacoe1MK
36 28 35 imbi12d n=maφxnMBcoe1PxnMK=Rxncoe1MKφxmaMBcoe1PxmaMK=Rxmacoe1MK
37 raleq n=NxnMBxNMB
38 37 anbi2d n=NφxnMBφxNMB
39 mpteq1 n=NxnM=xNM
40 39 oveq2d n=NPxnM=PxNM
41 40 fveq2d n=Ncoe1PxnM=coe1PxNM
42 41 fveq1d n=Ncoe1PxnMK=coe1PxNMK
43 mpteq1 n=Nxncoe1MK=xNcoe1MK
44 43 oveq2d n=NRxncoe1MK=RxNcoe1MK
45 42 44 eqeq12d n=Ncoe1PxnMK=Rxncoe1MKcoe1PxNMK=RxNcoe1MK
46 38 45 imbi12d n=NφxnMBcoe1PxnMK=Rxncoe1MKφxNMBcoe1PxNMK=RxNcoe1MK
47 mpt0 xM=
48 47 oveq2i PxM=P
49 eqid 0P=0P
50 49 gsum0 P=0P
51 48 50 eqtri PxM=0P
52 51 fveq2i coe1PxM=coe10P
53 52 a1i φcoe1PxM=coe10P
54 53 fveq1d φcoe1PxMK=coe10PK
55 eqid 0R=0R
56 1 49 55 coe1z RRingcoe10P=0×0R
57 3 56 syl φcoe10P=0×0R
58 57 fveq1d φcoe10PK=0×0RK
59 fvex 0RV
60 fvconst2g 0RVK00×0RK=0R
61 59 4 60 sylancr φ0×0RK=0R
62 54 58 61 3eqtrd φcoe1PxMK=0R
63 mpt0 xcoe1MK=
64 63 oveq2i Rxcoe1MK=R
65 55 gsum0 R=0R
66 64 65 eqtri Rxcoe1MK=0R
67 62 66 eqtr4di φcoe1PxMK=Rxcoe1MK
68 67 adantr φxMBcoe1PxMK=Rxcoe1MK
69 1 2 3 4 coe1fzgsumdlem mFin¬amφxmMBcoe1PxmMK=Rxmcoe1MKxmaMBcoe1PxmaMK=Rxmacoe1MK
70 69 3expia mFin¬amφxmMBcoe1PxmMK=Rxmcoe1MKxmaMBcoe1PxmaMK=Rxmacoe1MK
71 70 a2d mFin¬amφxmMBcoe1PxmMK=Rxmcoe1MKφxmaMBcoe1PxmaMK=Rxmacoe1MK
72 impexp φxmMBcoe1PxmMK=Rxmcoe1MKφxmMBcoe1PxmMK=Rxmcoe1MK
73 impexp φxmaMBcoe1PxmaMK=Rxmacoe1MKφxmaMBcoe1PxmaMK=Rxmacoe1MK
74 71 72 73 3imtr4g mFin¬amφxmMBcoe1PxmMK=Rxmcoe1MKφxmaMBcoe1PxmaMK=Rxmacoe1MK
75 16 26 36 46 68 74 findcard2s NFinφxNMBcoe1PxNMK=RxNcoe1MK
76 75 expd NFinφxNMBcoe1PxNMK=RxNcoe1MK
77 6 76 mpcom φxNMBcoe1PxNMK=RxNcoe1MK
78 5 77 mpd φcoe1PxNMK=RxNcoe1MK