Metamath Proof Explorer


Theorem coe1tmmul2fv

Description: Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses coe1tm.z 0˙=0R
coe1tm.k K=BaseR
coe1tm.p P=Poly1R
coe1tm.x X=var1R
coe1tm.m ·˙=P
coe1tm.n N=mulGrpP
coe1tm.e ×˙=N
coe1tmmul.b B=BaseP
coe1tmmul.t ˙=P
coe1tmmul.u ×˙=R
coe1tmmul.a φAB
coe1tmmul.r φRRing
coe1tmmul.c φCK
coe1tmmul.d φD0
coe1tmmul2fv.y φY0
Assertion coe1tmmul2fv φcoe1A˙C·˙D×˙XD+Y=coe1AY×˙C

Proof

Step Hyp Ref Expression
1 coe1tm.z 0˙=0R
2 coe1tm.k K=BaseR
3 coe1tm.p P=Poly1R
4 coe1tm.x X=var1R
5 coe1tm.m ·˙=P
6 coe1tm.n N=mulGrpP
7 coe1tm.e ×˙=N
8 coe1tmmul.b B=BaseP
9 coe1tmmul.t ˙=P
10 coe1tmmul.u ×˙=R
11 coe1tmmul.a φAB
12 coe1tmmul.r φRRing
13 coe1tmmul.c φCK
14 coe1tmmul.d φD0
15 coe1tmmul2fv.y φY0
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 coe1tmmul2 φcoe1A˙C·˙D×˙X=x0ifDxcoe1AxD×˙C0˙
17 16 fveq1d φcoe1A˙C·˙D×˙XD+Y=x0ifDxcoe1AxD×˙C0˙D+Y
18 14 15 nn0addcld φD+Y0
19 breq2 x=D+YDxDD+Y
20 fvoveq1 x=D+Ycoe1AxD=coe1AD+Y-D
21 20 oveq1d x=D+Ycoe1AxD×˙C=coe1AD+Y-D×˙C
22 19 21 ifbieq1d x=D+YifDxcoe1AxD×˙C0˙=ifDD+Ycoe1AD+Y-D×˙C0˙
23 eqid x0ifDxcoe1AxD×˙C0˙=x0ifDxcoe1AxD×˙C0˙
24 ovex coe1AD+Y-D×˙CV
25 1 fvexi 0˙V
26 24 25 ifex ifDD+Ycoe1AD+Y-D×˙C0˙V
27 22 23 26 fvmpt D+Y0x0ifDxcoe1AxD×˙C0˙D+Y=ifDD+Ycoe1AD+Y-D×˙C0˙
28 18 27 syl φx0ifDxcoe1AxD×˙C0˙D+Y=ifDD+Ycoe1AD+Y-D×˙C0˙
29 14 nn0red φD
30 nn0addge1 DY0DD+Y
31 29 15 30 syl2anc φDD+Y
32 31 iftrued φifDD+Ycoe1AD+Y-D×˙C0˙=coe1AD+Y-D×˙C
33 14 nn0cnd φD
34 15 nn0cnd φY
35 33 34 pncan2d φD+Y-D=Y
36 35 fveq2d φcoe1AD+Y-D=coe1AY
37 36 oveq1d φcoe1AD+Y-D×˙C=coe1AY×˙C
38 28 32 37 3eqtrd φx0ifDxcoe1AxD×˙C0˙D+Y=coe1AY×˙C
39 17 38 eqtrd φcoe1A˙C·˙D×˙XD+Y=coe1AY×˙C