Metamath Proof Explorer


Theorem cofon2

Description: Cofinality theorem for ordinals. If A and B are mutually cofinal, then their upper bounds agree. Compare cofcut2 for surreals. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses cofon2.1 φA𝒫On
cofon2.2 φB𝒫On
cofon2.3 φxAyBxy
cofon2.4 φzBwAzw
Assertion cofon2 φaOn|Aa=bOn|Bb

Proof

Step Hyp Ref Expression
1 cofon2.1 φA𝒫On
2 cofon2.2 φB𝒫On
3 cofon2.3 φxAyBxy
4 cofon2.4 φzBwAzw
5 sseq1 z=bzwbw
6 5 rexbidv z=bwAzwwAbw
7 4 adantr φbBzBwAzw
8 simpr φbBbB
9 6 7 8 rspcdva φbBwAbw
10 sseq2 w=cbwbc
11 10 cbvrexvw wAbwcAbc
12 9 11 sylib φbBcAbc
13 ssintub AaOn|Aa
14 13 a1i φbBAaOn|Aa
15 14 sselda φbBcAcaOn|Aa
16 2 elpwid φBOn
17 16 ad2antrr φbBcABOn
18 simplr φbBcAbB
19 17 18 sseldd φbBcAbOn
20 1 elpwid φAOn
21 ssorduni AOnOrdA
22 20 21 syl φOrdA
23 ordsuc OrdAOrdsucA
24 22 23 sylib φOrdsucA
25 1 uniexd φAV
26 sucexg AVsucAV
27 elong sucAVsucAOnOrdsucA
28 25 26 27 3syl φsucAOnOrdsucA
29 24 28 mpbird φsucAOn
30 onsucuni AOnAsucA
31 20 30 syl φAsucA
32 sseq2 a=sucAAaAsucA
33 32 rspcev sucAOnAsucAaOnAa
34 29 31 33 syl2anc φaOnAa
35 onintrab2 aOnAaaOn|AaOn
36 34 35 sylib φaOn|AaOn
37 36 ad2antrr φbBcAaOn|AaOn
38 ontr2 bOnaOn|AaOnbccaOn|AabaOn|Aa
39 19 37 38 syl2anc φbBcAbccaOn|AabaOn|Aa
40 15 39 mpan2d φbBcAbcbaOn|Aa
41 40 rexlimdva φbBcAbcbaOn|Aa
42 12 41 mpd φbBbaOn|Aa
43 42 ex φbBbaOn|Aa
44 43 ssrdv φBaOn|Aa
45 1 3 44 cofon1 φaOn|Aa=bOn|Bb