Metamath Proof Explorer


Theorem cofon1

Description: Cofinality theorem for ordinals. If A is cofinal with B and the upper bound of A dominates B , then their upper bounds are equal. Compare with cofcut1 for surreals. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses cofon1.1 φA𝒫On
cofon1.2 φxAyBxy
cofon1.3 φBzOn|Az
Assertion cofon1 φzOn|Az=wOn|Bw

Proof

Step Hyp Ref Expression
1 cofon1.1 φA𝒫On
2 cofon1.2 φxAyBxy
3 cofon1.3 φBzOn|Az
4 sseq2 w=zBwBz
5 4 cbvrabv wOn|Bw=zOn|Bz
6 sseq1 x=axyay
7 6 rexbidv x=ayBxyyBay
8 2 ad2antrr φzOnBzaAxAyBxy
9 simprr φzOnBzaAaA
10 7 8 9 rspcdva φzOnBzaAyBay
11 sseq2 y=bayab
12 11 cbvrexvw yBaybBab
13 10 12 sylib φzOnBzaAbBab
14 simprl φzOnBzaABz
15 14 sselda φzOnBzaAbBbz
16 1 elpwid φAOn
17 16 ad3antrrr φzOnBzaAbBAOn
18 simplrr φzOnBzaAbBaA
19 17 18 sseldd φzOnBzaAbBaOn
20 simpllr φzOnBzaAbBzOn
21 ontr2 aOnzOnabbzaz
22 19 20 21 syl2anc φzOnBzaAbBabbzaz
23 15 22 mpan2d φzOnBzaAbBabaz
24 23 rexlimdva φzOnBzaAbBabaz
25 13 24 mpd φzOnBzaAaz
26 25 expr φzOnBzaAaz
27 26 ssrdv φzOnBzAz
28 27 ex φzOnBzAz
29 28 ss2rabdv φzOn|BzzOn|Az
30 5 29 eqsstrid φwOn|BwzOn|Az
31 intss wOn|BwzOn|AzzOn|AzwOn|Bw
32 30 31 syl φzOn|AzwOn|Bw
33 sseq2 w=zOn|AzBwBzOn|Az
34 ssorduni AOnOrdA
35 16 34 syl φOrdA
36 ordsuc OrdAOrdsucA
37 35 36 sylib φOrdsucA
38 1 uniexd φAV
39 sucexg AVsucAV
40 38 39 syl φsucAV
41 elong sucAVsucAOnOrdsucA
42 40 41 syl φsucAOnOrdsucA
43 37 42 mpbird φsucAOn
44 onsucuni AOnAsucA
45 16 44 syl φAsucA
46 sseq2 z=sucAAzAsucA
47 46 rspcev sucAOnAsucAzOnAz
48 43 45 47 syl2anc φzOnAz
49 onintrab2 zOnAzzOn|AzOn
50 48 49 sylib φzOn|AzOn
51 33 50 3 elrabd φzOn|AzwOn|Bw
52 intss1 zOn|AzwOn|BwwOn|BwzOn|Az
53 51 52 syl φwOn|BwzOn|Az
54 32 53 eqssd φzOn|Az=wOn|Bw