Description: Cofinality theorem for ordinals. If A is cofinal with B and the upper bound of A dominates B , then their upper bounds are equal. Compare with cofcut1 for surreals. (Contributed by Scott Fenton, 20-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cofon1.1 | |
|
cofon1.2 | |
||
cofon1.3 | |
||
Assertion | cofon1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofon1.1 | |
|
2 | cofon1.2 | |
|
3 | cofon1.3 | |
|
4 | sseq2 | |
|
5 | 4 | cbvrabv | |
6 | sseq1 | |
|
7 | 6 | rexbidv | |
8 | 2 | ad2antrr | |
9 | simprr | |
|
10 | 7 8 9 | rspcdva | |
11 | sseq2 | |
|
12 | 11 | cbvrexvw | |
13 | 10 12 | sylib | |
14 | simprl | |
|
15 | 14 | sselda | |
16 | 1 | elpwid | |
17 | 16 | ad3antrrr | |
18 | simplrr | |
|
19 | 17 18 | sseldd | |
20 | simpllr | |
|
21 | ontr2 | |
|
22 | 19 20 21 | syl2anc | |
23 | 15 22 | mpan2d | |
24 | 23 | rexlimdva | |
25 | 13 24 | mpd | |
26 | 25 | expr | |
27 | 26 | ssrdv | |
28 | 27 | ex | |
29 | 28 | ss2rabdv | |
30 | 5 29 | eqsstrid | |
31 | intss | |
|
32 | 30 31 | syl | |
33 | sseq2 | |
|
34 | ssorduni | |
|
35 | 16 34 | syl | |
36 | ordsuc | |
|
37 | 35 36 | sylib | |
38 | 1 | uniexd | |
39 | sucexg | |
|
40 | 38 39 | syl | |
41 | elong | |
|
42 | 40 41 | syl | |
43 | 37 42 | mpbird | |
44 | onsucuni | |
|
45 | 16 44 | syl | |
46 | sseq2 | |
|
47 | 46 | rspcev | |
48 | 43 45 47 | syl2anc | |
49 | onintrab2 | |
|
50 | 48 49 | sylib | |
51 | 33 50 3 | elrabd | |
52 | intss1 | |
|
53 | 51 52 | syl | |
54 | 32 53 | eqssd | |