Metamath Proof Explorer


Theorem cofonr

Description: Inverse cofinality law for ordinals. Contrast with cofcutr for surreals. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Hypotheses cofonr.1 φAOn
cofonr.2 φA=xOn|Xx
Assertion cofonr φyAzXyz

Proof

Step Hyp Ref Expression
1 cofonr.1 φAOn
2 cofonr.2 φA=xOn|Xx
3 onss AOnAOn
4 1 3 syl φAOn
5 4 sselda φyAyOn
6 eloni yOnOrdy
7 ordirr Ordy¬yy
8 5 6 7 3syl φyA¬yy
9 2 adantr φyAA=xOn|Xx
10 9 adantr φyAXyA=xOn|Xx
11 5 adantr φyAXyyOn
12 simpr φyAXyXy
13 sseq2 x=yXxXy
14 13 elrab yxOn|XxyOnXy
15 11 12 14 sylanbrc φyAXyyxOn|Xx
16 intss1 yxOn|XxxOn|Xxy
17 15 16 syl φyAXyxOn|Xxy
18 10 17 eqsstrd φyAXyAy
19 simplr φyAXyyA
20 18 19 sseldd φyAXyyy
21 8 20 mtand φyA¬Xy
22 dfss3 XyzXzy
23 21 22 sylnib φyA¬zXzy
24 2 1 eqeltrrd φxOn|XxOn
25 onintrab2 xOnXxxOn|XxOn
26 24 25 sylibr φxOnXx
27 26 adantr φyAxOnXx
28 onss xOnxOn
29 28 adantl φyAxOnxOn
30 sstr XxxOnXOn
31 30 expcom xOnXxXOn
32 29 31 syl φyAxOnXxXOn
33 32 rexlimdva φyAxOnXxXOn
34 27 33 mpd φyAXOn
35 34 sselda φyAzXzOn
36 ontri1 yOnzOnyz¬zy
37 5 35 36 syl2an2r φyAzXyz¬zy
38 37 rexbidva φyAzXyzzX¬zy
39 rexnal zX¬zy¬zXzy
40 38 39 bitrdi φyAzXyz¬zXzy
41 23 40 mpbird φyAzXyz
42 41 ralrimiva φyAzXyz