Metamath Proof Explorer


Theorem coinitsslt

Description: If B is coinitial with C and A precedes C , then A precedes B . (Contributed by Scott Fenton, 24-Sep-2024)

Ref Expression
Assertion coinitsslt B𝒫NoxByCysxAsCAsB

Proof

Step Hyp Ref Expression
1 ssltex1 AsCAV
2 1 3ad2ant3 B𝒫NoxByCysxAsCAV
3 simp1 B𝒫NoxByCysxAsCB𝒫No
4 ssltss1 AsCANo
5 4 3ad2ant3 B𝒫NoxByCysxAsCANo
6 3 elpwid B𝒫NoxByCysxAsCBNo
7 breq2 x=bysxysb
8 7 rexbidv x=byCysxyCysb
9 simp12 B𝒫NoxByCysxAsCaAbBxByCysx
10 simp3 B𝒫NoxByCysxAsCaAbBbB
11 8 9 10 rspcdva B𝒫NoxByCysxAsCaAbByCysb
12 breq1 y=cysbcsb
13 12 cbvrexvw yCysbcCcsb
14 11 13 sylib B𝒫NoxByCysxAsCaAbBcCcsb
15 simpl13 B𝒫NoxByCysxAsCaAbBcCcsbAsC
16 15 4 syl B𝒫NoxByCysxAsCaAbBcCcsbANo
17 simpl2 B𝒫NoxByCysxAsCaAbBcCcsbaA
18 16 17 sseldd B𝒫NoxByCysxAsCaAbBcCcsbaNo
19 ssltss2 AsCCNo
20 15 19 syl B𝒫NoxByCysxAsCaAbBcCcsbCNo
21 simprl B𝒫NoxByCysxAsCaAbBcCcsbcC
22 20 21 sseldd B𝒫NoxByCysxAsCaAbBcCcsbcNo
23 simpl1 B𝒫NoxByCysxAsCaAbBcCcsbB𝒫NoxByCysxAsC
24 23 6 syl B𝒫NoxByCysxAsCaAbBcCcsbBNo
25 simpl3 B𝒫NoxByCysxAsCaAbBcCcsbbB
26 24 25 sseldd B𝒫NoxByCysxAsCaAbBcCcsbbNo
27 15 17 21 ssltsepcd B𝒫NoxByCysxAsCaAbBcCcsba<sc
28 simprr B𝒫NoxByCysxAsCaAbBcCcsbcsb
29 18 22 26 27 28 sltletrd B𝒫NoxByCysxAsCaAbBcCcsba<sb
30 14 29 rexlimddv B𝒫NoxByCysxAsCaAbBa<sb
31 2 3 5 6 30 ssltd B𝒫NoxByCysxAsCAsB