Metamath Proof Explorer


Theorem colinearxfr

Description: Transfer law for colinearity. Theorem 4.13 of Schwabhauser p. 37. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion colinearxfr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBColinearACABCCgr3DEFEColinearDF

Proof

Step Hyp Ref Expression
1 btwnxfr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBBtwnACABCCgr3DEFEBtwnDF
2 1 expcomd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBBtwnACEBtwnDF
3 2 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBBtwnACEBtwnDF
4 cgr3permute4 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFCABCgr3FDE
5 biid NN
6 3anrot C𝔼NA𝔼NB𝔼NA𝔼NB𝔼NC𝔼N
7 3anrot F𝔼ND𝔼NE𝔼ND𝔼NE𝔼NF𝔼N
8 btwnxfr NC𝔼NA𝔼NB𝔼NF𝔼ND𝔼NE𝔼NABtwnCBCABCgr3FDEDBtwnFE
9 5 6 7 8 syl3anbr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABtwnCBCABCgr3FDEDBtwnFE
10 9 expcomd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NCABCgr3FDEABtwnCBDBtwnFE
11 4 10 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABtwnCBDBtwnFE
12 11 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFABtwnCBDBtwnFE
13 cgr3permute3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBCACgr3EFD
14 3anrot A𝔼NB𝔼NC𝔼NB𝔼NC𝔼NA𝔼N
15 3anrot D𝔼NE𝔼NF𝔼NE𝔼NF𝔼ND𝔼N
16 btwnxfr NB𝔼NC𝔼NA𝔼NE𝔼NF𝔼ND𝔼NCBtwnBABCACgr3EFDFBtwnED
17 5 14 15 16 syl3anb NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NCBtwnBABCACgr3EFDFBtwnED
18 17 expcomd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBCACgr3EFDCBtwnBAFBtwnED
19 13 18 sylbid NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFCBtwnBAFBtwnED
20 19 imp NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFCBtwnBAFBtwnED
21 3 12 20 3orim123d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBBtwnACABtwnCBCBtwnBAEBtwnDFDBtwnFEFBtwnED
22 simp1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NN
23 simp22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NB𝔼N
24 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NA𝔼N
25 simp23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NC𝔼N
26 brcolinear NB𝔼NA𝔼NC𝔼NBColinearACBBtwnACABtwnCBCBtwnBA
27 22 23 24 25 26 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBColinearACBBtwnACABtwnCBCBtwnBA
28 27 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBColinearACBBtwnACABtwnCBCBtwnBA
29 simp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NE𝔼N
30 simp31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼ND𝔼N
31 simp33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NF𝔼N
32 brcolinear NE𝔼ND𝔼NF𝔼NEColinearDFEBtwnDFDBtwnFEFBtwnED
33 22 29 30 31 32 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NEColinearDFEBtwnDFDBtwnFEFBtwnED
34 33 adantr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFEColinearDFEBtwnDFDBtwnFEFBtwnED
35 21 28 34 3imtr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBColinearACEColinearDF
36 35 ex NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCCgr3DEFBColinearACEColinearDF
37 36 com23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBColinearACABCCgr3DEFEColinearDF
38 37 impd NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NBColinearACABCCgr3DEFEColinearDF