| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|
| 2 |
|
1re |
|
| 3 |
|
elioc2 |
|
| 4 |
1 2 3
|
mp2an |
|
| 5 |
4
|
simp1bi |
|
| 6 |
5
|
resqcld |
|
| 7 |
6
|
recnd |
|
| 8 |
|
2cn |
|
| 9 |
|
3cn |
|
| 10 |
|
3ne0 |
|
| 11 |
9 10
|
pm3.2i |
|
| 12 |
|
div12 |
|
| 13 |
8 11 12
|
mp3an13 |
|
| 14 |
7 13
|
syl |
|
| 15 |
|
2z |
|
| 16 |
|
expgt0 |
|
| 17 |
15 16
|
mp3an2 |
|
| 18 |
17
|
3adant3 |
|
| 19 |
4 18
|
sylbi |
|
| 20 |
|
2lt3 |
|
| 21 |
|
2re |
|
| 22 |
|
3re |
|
| 23 |
|
3pos |
|
| 24 |
21 22 22 23
|
ltdiv1ii |
|
| 25 |
20 24
|
mpbi |
|
| 26 |
9 10
|
dividi |
|
| 27 |
25 26
|
breqtri |
|
| 28 |
21 22 10
|
redivcli |
|
| 29 |
|
ltmul2 |
|
| 30 |
28 2 29
|
mp3an12 |
|
| 31 |
27 30
|
mpbii |
|
| 32 |
6 19 31
|
syl2anc |
|
| 33 |
7
|
mulridd |
|
| 34 |
32 33
|
breqtrd |
|
| 35 |
14 34
|
eqbrtrd |
|
| 36 |
|
0re |
|
| 37 |
|
ltle |
|
| 38 |
36 37
|
mpan |
|
| 39 |
38
|
imdistani |
|
| 40 |
|
le2sq2 |
|
| 41 |
2 40
|
mpanr1 |
|
| 42 |
39 41
|
stoic3 |
|
| 43 |
4 42
|
sylbi |
|
| 44 |
|
sq1 |
|
| 45 |
43 44
|
breqtrdi |
|
| 46 |
|
redivcl |
|
| 47 |
22 10 46
|
mp3an23 |
|
| 48 |
6 47
|
syl |
|
| 49 |
|
remulcl |
|
| 50 |
21 48 49
|
sylancr |
|
| 51 |
|
ltletr |
|
| 52 |
2 51
|
mp3an3 |
|
| 53 |
50 6 52
|
syl2anc |
|
| 54 |
35 45 53
|
mp2and |
|
| 55 |
|
posdif |
|
| 56 |
50 2 55
|
sylancl |
|
| 57 |
54 56
|
mpbid |
|
| 58 |
|
cos01bnd |
|
| 59 |
58
|
simpld |
|
| 60 |
|
resubcl |
|
| 61 |
2 50 60
|
sylancr |
|
| 62 |
5
|
recoscld |
|
| 63 |
|
lttr |
|
| 64 |
36 61 62 63
|
mp3an2i |
|
| 65 |
57 59 64
|
mp2and |
|