Metamath Proof Explorer


Theorem cos01gt0

Description: The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion cos01gt0 A010<cosA

Proof

Step Hyp Ref Expression
1 0xr 0*
2 1re 1
3 elioc2 0*1A01A0<AA1
4 1 2 3 mp2an A01A0<AA1
5 4 simp1bi A01A
6 5 resqcld A01A2
7 6 recnd A01A2
8 2cn 2
9 3cn 3
10 3ne0 30
11 9 10 pm3.2i 330
12 div12 2A23302A23=A223
13 8 11 12 mp3an13 A22A23=A223
14 7 13 syl A012A23=A223
15 2z 2
16 expgt0 A20<A0<A2
17 15 16 mp3an2 A0<A0<A2
18 17 3adant3 A0<AA10<A2
19 4 18 sylbi A010<A2
20 2lt3 2<3
21 2re 2
22 3re 3
23 3pos 0<3
24 21 22 22 23 ltdiv1ii 2<323<33
25 20 24 mpbi 23<33
26 9 10 dividi 33=1
27 25 26 breqtri 23<1
28 21 22 10 redivcli 23
29 ltmul2 231A20<A223<1A223<A21
30 28 2 29 mp3an12 A20<A223<1A223<A21
31 27 30 mpbii A20<A2A223<A21
32 6 19 31 syl2anc A01A223<A21
33 7 mulridd A01A21=A2
34 32 33 breqtrd A01A223<A2
35 14 34 eqbrtrd A012A23<A2
36 0re 0
37 ltle 0A0<A0A
38 36 37 mpan A0<A0A
39 38 imdistani A0<AA0A
40 le2sq2 A0A1A1A212
41 2 40 mpanr1 A0AA1A212
42 39 41 stoic3 A0<AA1A212
43 4 42 sylbi A01A212
44 sq1 12=1
45 43 44 breqtrdi A01A21
46 redivcl A2330A23
47 22 10 46 mp3an23 A2A23
48 6 47 syl A01A23
49 remulcl 2A232A23
50 21 48 49 sylancr A012A23
51 ltletr 2A23A212A23<A2A212A23<1
52 2 51 mp3an3 2A23A22A23<A2A212A23<1
53 50 6 52 syl2anc A012A23<A2A212A23<1
54 35 45 53 mp2and A012A23<1
55 posdif 2A2312A23<10<12A23
56 50 2 55 sylancl A012A23<10<12A23
57 54 56 mpbid A010<12A23
58 cos01bnd A0112A23<cosAcosA<1A23
59 58 simpld A0112A23<cosA
60 resubcl 12A2312A23
61 2 50 60 sylancr A0112A23
62 5 recoscld A01cosA
63 lttr 012A23cosA0<12A2312A23<cosA0<cosA
64 36 61 62 63 mp3an2i A010<12A2312A23<cosA0<cosA
65 57 59 64 mp2and A010<cosA