Metamath Proof Explorer


Theorem cos9thpinconstrlem2

Description: The complex number A is not constructible. (Contributed by Thierry Arnoux, 15-Nov-2025)

Ref Expression
Hypotheses cos9thpinconstr.1 O = e i 2 π 3
cos9thpiminply.2 Z = O 1 3
cos9thpiminply.3 A = Z + 1 Z
Assertion cos9thpinconstrlem2 ¬ A Constr

Proof

Step Hyp Ref Expression
1 cos9thpinconstr.1 O = e i 2 π 3
2 cos9thpiminply.2 Z = O 1 3
3 cos9thpiminply.3 A = Z + 1 Z
4 eqid deg 1 fld 𝑠 = deg 1 fld 𝑠
5 eqid fld minPoly = fld minPoly
6 ax-icn i
7 6 a1i i
8 2cnd 2
9 picn π
10 9 a1i π
11 8 10 mulcld 2 π
12 7 11 mulcld i 2 π
13 3cn 3
14 13 a1i 3
15 3ne0 3 0
16 15 a1i 3 0
17 12 14 16 divcld i 2 π 3
18 17 efcld e i 2 π 3
19 1 18 eqeltrid O
20 13 15 reccli 1 3
21 20 a1i 1 3
22 19 21 cxpcld O 1 3
23 2 22 eqeltrid Z
24 2 a1i Z = O 1 3
25 1 a1i O = e i 2 π 3
26 17 efne0d e i 2 π 3 0
27 25 26 eqnetrd O 0
28 19 27 21 cxpne0d O 1 3 0
29 24 28 eqnetrd Z 0
30 23 29 reccld 1 Z
31 23 30 addcld Z + 1 Z
32 3 31 eqeltrid A
33 eqidd fld minPoly A = fld minPoly A
34 eqid fld 𝑠 = fld 𝑠
35 eqid + Poly 1 fld 𝑠 = + Poly 1 fld 𝑠
36 eqid Poly 1 fld 𝑠 = Poly 1 fld 𝑠
37 eqid mulGrp Poly 1 fld 𝑠 = mulGrp Poly 1 fld 𝑠
38 eqid Poly 1 fld 𝑠 = Poly 1 fld 𝑠
39 eqid algSc Poly 1 fld 𝑠 = algSc Poly 1 fld 𝑠
40 eqid var 1 fld 𝑠 = var 1 fld 𝑠
41 eqid 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 3 Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 1 = 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 3 Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 1
42 1 2 3 34 35 36 37 38 39 40 4 41 5 cos9thpiminply 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 3 Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 1 = fld minPoly A deg 1 fld 𝑠 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 3 Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 1 = 3
43 42 simpli 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 3 Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 1 = fld minPoly A
44 43 fveq2i deg 1 fld 𝑠 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 3 Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 1 = deg 1 fld 𝑠 fld minPoly A
45 42 simpri deg 1 fld 𝑠 3 mulGrp Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 3 Poly 1 fld 𝑠 var 1 fld 𝑠 + Poly 1 fld 𝑠 algSc Poly 1 fld 𝑠 1 = 3
46 44 45 eqtr3i deg 1 fld 𝑠 fld minPoly A = 3
47 3nn0 3 0
48 46 47 eqeltri deg 1 fld 𝑠 fld minPoly A 0
49 48 a1i deg 1 fld 𝑠 fld minPoly A 0
50 46 a1i n 0 deg 1 fld 𝑠 fld minPoly A = 3
51 3z 3
52 iddvds 3 3 3
53 51 52 ax-mp 3 3
54 simpr n 0 3 = 2 n 3 = 2 n
55 53 54 breqtrid n 0 3 = 2 n 3 2 n
56 3prm 3
57 2prm 2
58 prmdvdsexpr 3 2 n 0 3 2 n 3 = 2
59 56 57 58 mp3an12 n 0 3 2 n 3 = 2
60 59 imp n 0 3 2 n 3 = 2
61 55 60 syldan n 0 3 = 2 n 3 = 2
62 2re 2
63 2lt3 2 < 3
64 62 63 gtneii 3 2
65 64 neii ¬ 3 = 2
66 65 a1i n 0 3 = 2 n ¬ 3 = 2
67 61 66 pm2.65da n 0 ¬ 3 = 2 n
68 67 neqned n 0 3 2 n
69 50 68 eqnetrd n 0 deg 1 fld 𝑠 fld minPoly A 2 n
70 69 adantl n 0 deg 1 fld 𝑠 fld minPoly A 2 n
71 4 5 32 33 49 70 constrcon ¬ A Constr
72 71 mptru ¬ A Constr