Metamath Proof Explorer


Theorem cosadd

Description: Addition formula for cosine. Equation 15 of Gleason p. 310. (Contributed by NM, 15-Jan-2006) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion cosadd ABcosA+B=cosAcosBsinAsinB

Proof

Step Hyp Ref Expression
1 addcl ABA+B
2 cosval A+BcosA+B=eiA+B+eiA+B2
3 1 2 syl ABcosA+B=eiA+B+eiA+B2
4 coscl AcosA
5 4 adantr ABcosA
6 coscl BcosB
7 6 adantl ABcosB
8 5 7 mulcld ABcosAcosB
9 ax-icn i
10 sincl BsinB
11 10 adantl ABsinB
12 mulcl isinBisinB
13 9 11 12 sylancr ABisinB
14 sincl AsinA
15 14 adantr ABsinA
16 mulcl isinAisinA
17 9 15 16 sylancr ABisinA
18 13 17 mulcld ABisinBisinA
19 8 18 addcld ABcosAcosB+isinBisinA
20 5 13 mulcld ABcosAisinB
21 7 17 mulcld ABcosBisinA
22 20 21 addcld ABcosAisinB+cosBisinA
23 19 22 19 ppncand ABcosAcosB+isinBisinA+cosAisinB+cosBisinA+cosAcosB+isinBisinA-cosAisinB+cosBisinA=cosAcosB+isinBisinA+cosAcosB+isinBisinA
24 adddi iABiA+B=iA+iB
25 9 24 mp3an1 ABiA+B=iA+iB
26 25 fveq2d ABeiA+B=eiA+iB
27 simpl ABA
28 mulcl iAiA
29 9 27 28 sylancr ABiA
30 simpr ABB
31 mulcl iBiB
32 9 30 31 sylancr ABiB
33 efadd iAiBeiA+iB=eiAeiB
34 29 32 33 syl2anc ABeiA+iB=eiAeiB
35 efival AeiA=cosA+isinA
36 efival BeiB=cosB+isinB
37 35 36 oveqan12d ABeiAeiB=cosA+isinAcosB+isinB
38 5 17 7 13 muladdd ABcosA+isinAcosB+isinB=cosAcosB+isinBisinA+cosAisinB+cosBisinA
39 37 38 eqtrd ABeiAeiB=cosAcosB+isinBisinA+cosAisinB+cosBisinA
40 26 34 39 3eqtrd ABeiA+B=cosAcosB+isinBisinA+cosAisinB+cosBisinA
41 negicn i
42 adddi iABiA+B=iA+iB
43 41 42 mp3an1 ABiA+B=iA+iB
44 43 fveq2d ABeiA+B=eiA+iB
45 mulcl iAiA
46 41 27 45 sylancr ABiA
47 mulcl iBiB
48 41 30 47 sylancr ABiB
49 efadd iAiBeiA+iB=eiAeiB
50 46 48 49 syl2anc ABeiA+iB=eiAeiB
51 efmival AeiA=cosAisinA
52 efmival BeiB=cosBisinB
53 51 52 oveqan12d ABeiAeiB=cosAisinAcosBisinB
54 5 17 7 13 mulsubd ABcosAisinAcosBisinB=cosAcosB+isinBisinA-cosAisinB+cosBisinA
55 53 54 eqtrd ABeiAeiB=cosAcosB+isinBisinA-cosAisinB+cosBisinA
56 44 50 55 3eqtrd ABeiA+B=cosAcosB+isinBisinA-cosAisinB+cosBisinA
57 40 56 oveq12d ABeiA+B+eiA+B=cosAcosB+isinBisinA+cosAisinB+cosBisinA+cosAcosB+isinBisinA-cosAisinB+cosBisinA
58 19 2timesd AB2cosAcosB+isinBisinA=cosAcosB+isinBisinA+cosAcosB+isinBisinA
59 23 57 58 3eqtr4d ABeiA+B+eiA+B=2cosAcosB+isinBisinA
60 59 oveq1d ABeiA+B+eiA+B2=2cosAcosB+isinBisinA2
61 2cn 2
62 2ne0 20
63 divcan3 cosAcosB+isinBisinA2202cosAcosB+isinBisinA2=cosAcosB+isinBisinA
64 61 62 63 mp3an23 cosAcosB+isinBisinA2cosAcosB+isinBisinA2=cosAcosB+isinBisinA
65 19 64 syl AB2cosAcosB+isinBisinA2=cosAcosB+isinBisinA
66 9 a1i ABi
67 66 11 66 15 mul4d ABisinBisinA=iisinBsinA
68 ixi ii=1
69 68 oveq1i iisinBsinA=-1sinBsinA
70 11 15 mulcomd ABsinBsinA=sinAsinB
71 70 oveq2d AB-1sinBsinA=-1sinAsinB
72 69 71 eqtrid ABiisinBsinA=-1sinAsinB
73 15 11 mulcld ABsinAsinB
74 73 mulm1d AB-1sinAsinB=sinAsinB
75 67 72 74 3eqtrd ABisinBisinA=sinAsinB
76 75 oveq2d ABcosAcosB+isinBisinA=cosAcosB+sinAsinB
77 8 73 negsubd ABcosAcosB+sinAsinB=cosAcosBsinAsinB
78 65 76 77 3eqtrd AB2cosAcosB+isinBisinA2=cosAcosBsinAsinB
79 3 60 78 3eqtrd ABcosA+B=cosAcosBsinAsinB