Metamath Proof Explorer


Theorem cosatan

Description: The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion cosatan AdomarctancosarctanA=11+A2

Proof

Step Hyp Ref Expression
1 atancl AdomarctanarctanA
2 cosval arctanAcosarctanA=eiarctanA+eiarctanA2
3 1 2 syl AdomarctancosarctanA=eiarctanA+eiarctanA2
4 efiatan2 AdomarctaneiarctanA=1+iA1+A2
5 ax-icn i
6 mulneg12 iarctanAiarctanA=iarctanA
7 5 1 6 sylancr AdomarctaniarctanA=iarctanA
8 atanneg AdomarctanarctanA=arctanA
9 8 oveq2d AdomarctaniarctanA=iarctanA
10 7 9 eqtr4d AdomarctaniarctanA=iarctanA
11 10 fveq2d AdomarctaneiarctanA=eiarctanA
12 atandmneg AdomarctanAdomarctan
13 efiatan2 AdomarctaneiarctanA=1+iA1+A2
14 12 13 syl AdomarctaneiarctanA=1+iA1+A2
15 atandm4 AdomarctanA1+A20
16 15 simplbi AdomarctanA
17 mulneg2 iAiA=iA
18 5 16 17 sylancr AdomarctaniA=iA
19 18 oveq2d Adomarctan1+iA=1+iA
20 ax-1cn 1
21 mulcl iAiA
22 5 16 21 sylancr AdomarctaniA
23 negsub 1iA1+iA=1iA
24 20 22 23 sylancr Adomarctan1+iA=1iA
25 19 24 eqtrd Adomarctan1+iA=1iA
26 sqneg AA2=A2
27 16 26 syl AdomarctanA2=A2
28 27 oveq2d Adomarctan1+A2=1+A2
29 28 fveq2d Adomarctan1+A2=1+A2
30 25 29 oveq12d Adomarctan1+iA1+A2=1iA1+A2
31 11 14 30 3eqtrd AdomarctaneiarctanA=1iA1+A2
32 4 31 oveq12d AdomarctaneiarctanA+eiarctanA=1+iA1+A2+1iA1+A2
33 addcl 1iA1+iA
34 20 22 33 sylancr Adomarctan1+iA
35 subcl 1iA1iA
36 20 22 35 sylancr Adomarctan1iA
37 16 sqcld AdomarctanA2
38 addcl 1A21+A2
39 20 37 38 sylancr Adomarctan1+A2
40 39 sqrtcld Adomarctan1+A2
41 39 sqsqrtd Adomarctan1+A22=1+A2
42 15 simprbi Adomarctan1+A20
43 41 42 eqnetrd Adomarctan1+A220
44 sqne0 1+A21+A2201+A20
45 40 44 syl Adomarctan1+A2201+A20
46 43 45 mpbid Adomarctan1+A20
47 34 36 40 46 divdird Adomarctan1+iA+1iA1+A2=1+iA1+A2+1iA1+A2
48 20 a1i Adomarctan1
49 48 22 48 ppncand Adomarctan1+iA+1iA=1+1
50 df-2 2=1+1
51 49 50 eqtr4di Adomarctan1+iA+1iA=2
52 51 oveq1d Adomarctan1+iA+1iA1+A2=21+A2
53 32 47 52 3eqtr2d AdomarctaneiarctanA+eiarctanA=21+A2
54 53 oveq1d AdomarctaneiarctanA+eiarctanA2=21+A22
55 2cnd Adomarctan2
56 2ne0 20
57 56 a1i Adomarctan20
58 55 40 55 46 57 divdiv32d Adomarctan21+A22=221+A2
59 2div2e1 22=1
60 59 oveq1i 221+A2=11+A2
61 58 60 eqtrdi Adomarctan21+A22=11+A2
62 3 54 61 3eqtrd AdomarctancosarctanA=11+A2