Description: The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cotrcltrcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftrcl3 | |
|
2 | dftrcl3 | |
|
3 | dftrcl3 | |
|
4 | nnex | |
|
5 | unidm | |
|
6 | 5 | eqcomi | |
7 | 1ex | |
|
8 | oveq2 | |
|
9 | 7 8 | iunxsn | |
10 | ovex | |
|
11 | 4 10 | iunex | |
12 | relexp1g | |
|
13 | 11 12 | ax-mp | |
14 | oveq2 | |
|
15 | 14 | cbviunv | |
16 | 13 15 | eqtri | |
17 | 9 16 | eqtri | |
18 | 17 | eqcomi | |
19 | 1nn | |
|
20 | snssi | |
|
21 | iunss1 | |
|
22 | 19 20 21 | mp2b | |
23 | 18 22 | eqsstri | |
24 | iunss | |
|
25 | oveq2 | |
|
26 | 25 | sseq1d | |
27 | oveq2 | |
|
28 | 27 | sseq1d | |
29 | oveq2 | |
|
30 | 29 | sseq1d | |
31 | oveq2 | |
|
32 | 31 | sseq1d | |
33 | 16 | eqimssi | |
34 | simpl | |
|
35 | relexpsucnnr | |
|
36 | 11 34 35 | sylancr | |
37 | coss1 | |
|
38 | 37 | adantl | |
39 | 15 | coeq2i | |
40 | trclfvcotrg | |
|
41 | oveq1 | |
|
42 | 41 | iuneq2d | |
43 | ovex | |
|
44 | 4 43 | iunex | |
45 | 42 3 44 | fvmpt | |
46 | 45 | elv | |
47 | 46 46 | coeq12i | |
48 | 40 47 46 | 3sstr3i | |
49 | 39 48 | eqsstri | |
50 | 38 49 | sstrdi | |
51 | 36 50 | eqsstrd | |
52 | 51 | ex | |
53 | 26 28 30 32 33 52 | nnind | |
54 | 24 53 | mprgbir | |
55 | iuneq1 | |
|
56 | 6 55 | ax-mp | |
57 | 54 56 | sseqtri | |
58 | 1 2 3 4 4 6 23 23 57 | comptiunov2i | |