Metamath Proof Explorer


Theorem cotrcltrcl

Description: The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020)

Ref Expression
Assertion cotrcltrcl t+ t+ = t+

Proof

Step Hyp Ref Expression
1 dftrcl3 t+ = a V i a r i
2 dftrcl3 t+ = b V j b r j
3 dftrcl3 t+ = c V k c r k
4 nnex V
5 unidm =
6 5 eqcomi =
7 1ex 1 V
8 oveq2 i = 1 j d r j r i = j d r j r 1
9 7 8 iunxsn i 1 j d r j r i = j d r j r 1
10 ovex d r j V
11 4 10 iunex j d r j V
12 relexp1g j d r j V j d r j r 1 = j d r j
13 11 12 ax-mp j d r j r 1 = j d r j
14 oveq2 j = k d r j = d r k
15 14 cbviunv j d r j = k d r k
16 13 15 eqtri j d r j r 1 = k d r k
17 9 16 eqtri i 1 j d r j r i = k d r k
18 17 eqcomi k d r k = i 1 j d r j r i
19 1nn 1
20 snssi 1 1
21 iunss1 1 i 1 j d r j r i i j d r j r i
22 19 20 21 mp2b i 1 j d r j r i i j d r j r i
23 18 22 eqsstri k d r k i j d r j r i
24 iunss i j d r j r i k d r k i j d r j r i k d r k
25 oveq2 x = 1 j d r j r x = j d r j r 1
26 25 sseq1d x = 1 j d r j r x k d r k j d r j r 1 k d r k
27 oveq2 x = y j d r j r x = j d r j r y
28 27 sseq1d x = y j d r j r x k d r k j d r j r y k d r k
29 oveq2 x = y + 1 j d r j r x = j d r j r y + 1
30 29 sseq1d x = y + 1 j d r j r x k d r k j d r j r y + 1 k d r k
31 oveq2 x = i j d r j r x = j d r j r i
32 31 sseq1d x = i j d r j r x k d r k j d r j r i k d r k
33 16 eqimssi j d r j r 1 k d r k
34 simpl y j d r j r y k d r k y
35 relexpsucnnr j d r j V y j d r j r y + 1 = j d r j r y j d r j
36 11 34 35 sylancr y j d r j r y k d r k j d r j r y + 1 = j d r j r y j d r j
37 coss1 j d r j r y k d r k j d r j r y j d r j k d r k j d r j
38 37 adantl y j d r j r y k d r k j d r j r y j d r j k d r k j d r j
39 15 coeq2i k d r k j d r j = k d r k k d r k
40 trclfvcotrg t+ d t+ d t+ d
41 oveq1 c = d c r k = d r k
42 41 iuneq2d c = d k c r k = k d r k
43 ovex d r k V
44 4 43 iunex k d r k V
45 42 3 44 fvmpt d V t+ d = k d r k
46 45 elv t+ d = k d r k
47 46 46 coeq12i t+ d t+ d = k d r k k d r k
48 40 47 46 3sstr3i k d r k k d r k k d r k
49 39 48 eqsstri k d r k j d r j k d r k
50 38 49 sstrdi y j d r j r y k d r k j d r j r y j d r j k d r k
51 36 50 eqsstrd y j d r j r y k d r k j d r j r y + 1 k d r k
52 51 ex y j d r j r y k d r k j d r j r y + 1 k d r k
53 26 28 30 32 33 52 nnind i j d r j r i k d r k
54 24 53 mprgbir i j d r j r i k d r k
55 iuneq1 = k d r k = k d r k
56 6 55 ax-mp k d r k = k d r k
57 54 56 sseqtri i j d r j r i k d r k
58 1 2 3 4 4 6 23 23 57 comptiunov2i t+ t+ = t+