| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
1
|
adantr |
|
| 3 |
|
zsubcl |
|
| 4 |
3
|
ancoms |
|
| 5 |
4
|
adantl |
|
| 6 |
|
simpr |
|
| 7 |
6
|
adantl |
|
| 8 |
2 5 7
|
3jca |
|
| 9 |
8
|
adantr |
|
| 10 |
|
3cshw |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
simpl |
|
| 13 |
12
|
ancomd |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
15
|
ancomd |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
18
|
eqcomd |
|
| 20 |
|
cshwleneq |
|
| 21 |
14 17 19 20
|
syl3anc |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
11 23
|
eqtrd |
|
| 25 |
19
|
oveq1d |
|
| 26 |
|
simpl |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simpl |
|
| 29 |
28
|
adantl |
|
| 30 |
27 29 5
|
3jca |
|
| 31 |
30
|
adantr |
|
| 32 |
|
2cshw |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
zcn |
|
| 35 |
|
zcn |
|
| 36 |
34 35
|
anim12i |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
adantr |
|
| 39 |
|
pncan3 |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
oveq2d |
|
| 42 |
25 33 41
|
3eqtrd |
|
| 43 |
42
|
oveq1d |
|
| 44 |
|
lencl |
|
| 45 |
44
|
nn0zd |
|
| 46 |
45
|
adantr |
|
| 47 |
|
zsubcl |
|
| 48 |
46 6 47
|
syl2an |
|
| 49 |
27 7 48
|
3jca |
|
| 50 |
49
|
adantr |
|
| 51 |
|
2cshw |
|
| 52 |
50 51
|
syl |
|
| 53 |
24 43 52
|
3eqtrd |
|
| 54 |
44
|
nn0cnd |
|
| 55 |
54
|
adantr |
|
| 56 |
35
|
adantl |
|
| 57 |
55 56
|
anim12i |
|
| 58 |
57
|
ancomd |
|
| 59 |
58
|
adantr |
|
| 60 |
|
pncan3 |
|
| 61 |
59 60
|
syl |
|
| 62 |
61
|
oveq2d |
|
| 63 |
|
cshwn |
|
| 64 |
27 63
|
syl |
|
| 65 |
64
|
adantr |
|
| 66 |
53 62 65
|
3eqtrd |
|
| 67 |
66
|
ex |
|